Regular Languages are in Nick’s Class

We give an NC algorithm which decides the mambership problem for a regular language,
proving that the class of regular languages is a subclass of Nick’s Class.

Logical Matrices

A logical matrix is a matrix whose entries are of Boolean type. We write 1 for true and
0 for false. Matrix addition and multiplication is defined in the usual manner for logical
matrices, except that disjunction replaces addition and conjunction replaces multiplication.

011 100 110
For example, | 0 1
1 1

0 1 1 0O)l=1{(1200
0 0 0 0 1 00
Transition Matrices

Let L C ¥* be a regular language over X, and let M = (X,Q, F, ¢,,9) be an NFA which
accepts L. Let Q = {q¢; : 0 <i < k}. For any a € ¥ we define the transition matriz T, to
be the k£ x k logical matrix where

-, [1lifg €d(a,q) .
Tuli, 7] = { 0 otherwise forall 0<i,j <k

We extend this definition by mapping concatenation to matrix multiplication, i.e., T, =
T, T,, and T} is the identity matrix.

Algorithnm A

A reads a string w € ¥* and returns 1 if and only if w € L. Without loss of generality,
|lwl| is a power of 2. Let m = log,n. For any 0 < p < m, w is the concatenation of 2P
substrings of length 27. Let S be the set of all substrings thus obtained. A is as follows:

Algorithm A

Compute the transition matrix 7T, for all a € X
For all p from 1 to m

For all u € § of length 2P

Let u = zy where |x| = |y| = 277!

T, =1T,T,
If (T,,[0, f] for some f € F') return 1
Else return 0

Since we are taking the sizes of ¥ and @ to be O(1), all T}, for a € ¥ can be computed
in O(1) time by one processor. The remainder of the algorithm consists of n — 1 matrix
multiplications which can be done in O(logn) time with O(n) processors. Thus A € NC.

Example

Let ¥ = {a,b,c} and L = L(M), bm

where M is the followinhg NFA. Let a

w = acacabba. NN <::> . (::)

b

We compute transition matrices of

elementary strings, then copy to the C ab

8 leaves of our computation tree.

Each matrix in rows 2-4 is the prod- ‘ C @

B

uct of the two above it. Thenw € L a C @

since T,,[0,3] =1 and ¢; € F.
100 0 0110 0010 0000
0100 00 00 0101 0000
0010 00 00 0000 0 0 01
0 0 01 0 0 01 0000 10 00

T)\ Ta Tb TC

0110 0000 0110 0000 0110 0010 0010 0110
0000 0000 0000 0000 0000 0101 0101 0000
0000 0001 0000 0001 0000 0000 0000 0000
0001 1000. 0001 1000. 0001 0000 0000 0001

T, T, T, T, T, Ty Ty T,
0001 0001 0101 0000
0000 0000 0000 0001
0000 0000 0000 0000
1000 1000. 0000 0000
Tac Tac Tab Tba

1000 0001
0000 0000
0000 0000
0001 0000
Tacac Tabba

0001

0000

0000

0000

Tacacabba - Tw

