Regular Languages are in Nick's Class

We give an \mathcal{NC} algorithm which decides the mambership problem for a regular language, proving that the class of regular languages is a subclass of Nick's Class.

Logical Matrices

A logical matrix is a matrix whose entries are of Boolean type. We write 1 for true and 0 for false. Matrix addition and multiplication is defined in the usual manner for logical matrices, except that disjunction replaces addition and conjunction replaces multiplication.

For example, $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

Transition Matrices

Let $L \subseteq \Sigma^*$ be a regular language over Σ , and let $M = (\Sigma, Q, F, q_0, \delta)$ be an NFA which accepts L. Let $Q = \{q_i : 0 \le i < k\}$. For any $a \in \Sigma$ we define the *transition matrix* T_a to be the $k \times k$ logical matrix where

$$T_a[i,j] = \begin{cases} 1 \text{ if } q_j \in \delta(a,q_i) \\ 0 \text{ otherwise} \end{cases} \quad \text{for all } 0 \le i,j < k$$

We extend this definition by mapping concatenation to matrix multiplication, *i.e.*, $T_{uv} = T_u T_v$, and T_{λ} is the identity matrix.

Algorithmm \mathcal{A}

 \mathcal{A} reads a string $w \in \Sigma^*$ and returns 1 if and only if $w \in L$. Without loss of generality, |w| is a power of 2. Let $m = \log_2 n$. For any $0 \leq p \leq m$, w is the concatenation of 2^{m-p} substrings of length 2^p . Let \mathcal{S} be the set of all substrings thus obtained. \mathcal{A} is as follows:

Algorithm \mathcal{A} Compute the transition matrix T_a for all $a \in \Sigma$ For all p from 1 to mFor all $u \in \mathcal{S}$ of length 2^p Let u = xy where $|x| = |y| = 2^{p-1}$ $T_u = T_x T_y$ If $(T_w[0, f]$ for some $f \in F$) return 1 Else return 0 Since we are taking the sizes of Σ and Q to be O(1), all T_a for $a \in \Sigma$ can be computed in O(1) time by one processor. The remainder of the algorithm consists of n-1 matrix multiplications which can be done in $O(\log n)$ time with O(n) processors. Thus $\mathcal{A} \in \mathcal{NC}$.

Example

0

[0110]

0000

0000

L0001

 T_a

1 0

 T_{λ}

[0001]

0000

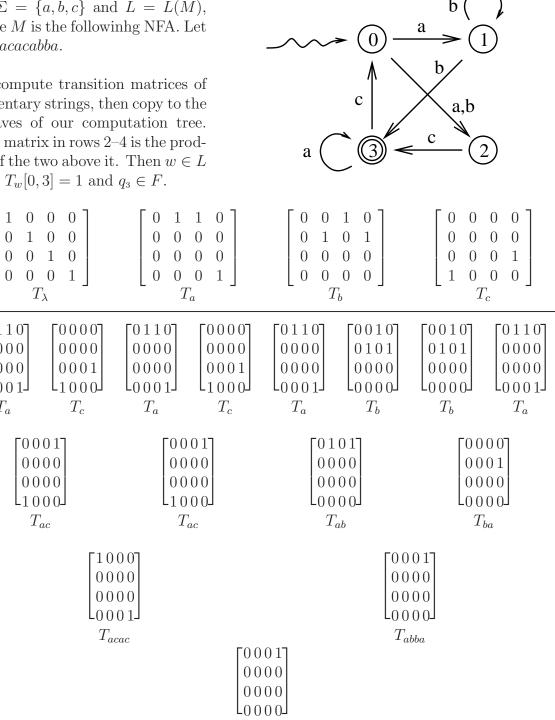
0000

L1000

 T_{ac}

Let $\Sigma = \{a, b, c\}$ and L = L(M), where M is the following NFA. Let w = acacabba.

We compute transition matrices of elementary strings, then copy to the 8 leaves of our computation tree. Each matrix in rows 2–4 is the product of the two above it. Then $w \in L$ since $T_w[0,3] = 1$ and $q_3 \in F$.



 $T_{acacabba} = T_w$