Regular Languages are in Nick's Class

We give an $\mathcal{N C}$ algorithm which decides the mambership problem for a regular language, proving that the class of regular languages is a subclass of Nick's Class.

Logical Matrices

A logical matrix is a matrix whose entries are of Boolean type. We write 1 for true and 0 for false. Matrix addition and multiplication is defined in the usual manner for logical matrices, except that disjunction replaces addition and conjunction replaces multiplication.
For example, $\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$

Transition Matrices

Let $L \subseteq \Sigma^{*}$ be a regular language over Σ, and let $M=\left(\Sigma, Q, F, q_{0}, \delta\right)$ be an NFA which accepts L. Let $Q=\left\{q_{i}: 0 \leq i<k\right\}$. For any $a \in \Sigma$ we define the transition matrix T_{a} to be the $k \times k$ logical matrix where

$$
T_{a}[i, j]=\left\{\begin{array}{l}
1 \text { if } q_{j} \in \delta\left(a, q_{i}\right) \\
0 \text { otherwise }
\end{array} \quad \text { for all } 0 \leq i, j<k\right.
$$

We extend this definition by mapping concatenation to matrix multiplication, i.e., $T_{u v}=$ $T_{u} T_{v}$, and T_{λ} is the identity matrix.

Algorithnm \mathcal{A}

\mathcal{A} reads a string $w \in \Sigma^{*}$ and returns 1 if and only if $w \in L$. Without loss of generality, $|w|$ is a power of 2 . Let $m=\log _{2} n$. For any $0 \leq p \leq m, w$ is the concatenation of 2^{m-p} substrings of length 2^{p}. Let \mathcal{S} be the set of all substrings thus obtained. \mathcal{A} is as follows:

```
Algorithm \(\mathcal{A}\)
Compute the transition matrix \(T_{a}\) for all \(a \in \Sigma\)
For all \(p\) from 1 to \(m\)
    For all \(u \in \mathcal{S}\) of length \(2^{p}\)
    Let \(u=x y\) where \(|x|=|y|=2^{p-1}\)
    \(T_{u}=T_{x} T_{y}\)
If \(\left(T_{w}[0, f]\right.\) for some \(\left.f \in F\right)\) return 1
Else return 0
```

Since we are taking the sizes of Σ and Q to be $O(1)$, all T_{a} for $a \in \Sigma$ can be computed in $O(1)$ time by one processor. The remainder of the algorithm consists of $n-1$ matrix multiplications which can be done in $O(\log n)$ time with $O(n)$ processors. Thus $\mathcal{A} \in \mathcal{N C}$.

Example

Let $\Sigma=\{a, b, c\}$ and $L=L(M)$, where M is the followinhg NFA. Let $w=a c a c a b b a$.

We compute transition matrices of elementary strings, then copy to the 8 leaves of our computation tree. Each matrix in rows 2-4 is the product of the two above it. Then $w \in L$ since $T_{w}[0,3]=1$ and $q_{3} \in F$.

