CSC 456/656 Spring 2024 First Examination Problems to Study

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known to science at

this	time.
(i)	Every subset of a regular language is regular.
(ii)	The class of regular languages is closed under intersection.
(iii)	\mathcal{P} -TIME = \mathcal{NP} .
(iv)	The class of regular languages is closed under Kleene closure.
(v)	The class of context-free languages is closed under union.
(vi)	The class of context-free languages is closed under intersection.
(vii)	The set of binary numerals for prime numbers is a regular language.
(viii)	The set of binary numerals for prime numbers is \mathcal{P} -TIME.
(ix)	The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
(x)	The complement of any context-free language is context-free.
(xi)	The complement of any recursive (that is, decidable) language is recursive.
(xii)	If Σ is an alphabet, then Σ^* is a regular language.
(xiii)	If L is a language and L^* is a regular language, then L must be a regular language. (Think!)
(xiv)	The class of languages which are $not\ regular$ is closed under intersection. (Think!)
(xv)	The minimal DFA equivalent to an NFA with n states must have at least 2^n states.
(xvi)	If a non-derministic machine can solve a given problem in polynomial time, then there must be is a deterministic machine which can solve the same problem in polynomial time.
(xvii)	The complement of any regular language is regular.
(xviii)	Any context-free language is generated by some ambiguous context-free grammar.
(xix)	Any context-free language is generated by some unambiguous context-free grammar.
(xx)	The Dyck language is regular.
(xxi)	Every regular language is context-free.
(xxii)	Every language is decided by some machine.
(xxiii)	Every language is accepted by some machine.
2. A la	nguage is context-free if and only if it is accepted by some

- 3. Give definitions of each of the following terms.
 - (a) Symbol.
 - (b) Alphabet.
 - (c) String over a given alphabet Σ .
 - (d) Language over a given alphabet Σ .
- 4. Give an example of a language which is context-free but not regular.
- 5. Give an example of a language which is not context-free.
- 6. Let L be the language of all binary strings encoding numbers which are equivalent to 1 modulo 3, where leading zeros are allowed. Thus, $L = \{1, 01, 001, 100, 111, 0100, 0111, 1010, \ldots\}$. Draw a DFA which accepts L. (You need only three states.)
- 7. 20 Let G be the CF grammar given below, where E is the start symbol.
 - (a) Show that G is ambiguous by giving two different **rightmost** derivations for the string x-y+z.
 - (b) Which of these two derivations respects the usual precedence of operators?
 - 1. $E \rightarrow E E$
 - $2. E \rightarrow E + E$
 - 3. $E \rightarrow x$
 - 4. $E \rightarrow y$
 - 5. $E \rightarrow z$
- 8. Give a grammar for the language accepted by the NFA shown in Figure 1 below.

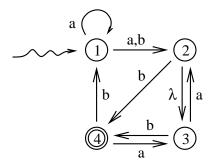


Figure 1:

NFA for Problem 8.

9. Write a regular expression for the language accepted by the machine shown in Figure 2.

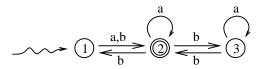


Figure 2

- 10. For each of the binary languages described here, identify which of grammars (each with start symbol S) listed below generates that language?
 - (i) _____ All binary strings.
 - (ii) _____ All binary numerals for multiples of three.
 - (iii) _____ All binary strings which have the same number of 0's as 1's.
 - (iv) _____ All binary strings w which have the Dyck property, that is, w has equal number of 0's and 1's, and each prefix of w has at least as many 1's as 0's.
 - (v) _____ All binary numerals for powers of two.
 - (vi) _____ The language accepted by the NFA shown in Figure 3 below.

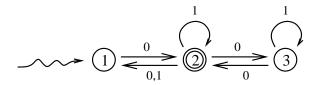


Figure 3

- (a) $S \to 1S0S \mid \lambda$
- (b) $S \to AS \mid BS \mid \lambda$

$$A \rightarrow 1A0A \mid \lambda$$

$$A \rightarrow 0B1B \mid \lambda$$

(c) $S \to 1A$

$$A \to 0A \mid \lambda$$

- (d) $S \rightarrow 1S \mid 0S \mid \lambda$
- (e) $S \rightarrow 1A \mid 0$

$$A \rightarrow 1B \mid 0C$$

$$B \to 0B \mid 1A \mid \lambda$$

$$C \rightarrow 1C \mid 0A$$

(f) $S \to 0A$

$$A \rightarrow 0S \,|\, 1S \,|\, 0B \,|\, 1A \,|\, \lambda$$

$$B \rightarrow 1B \mid 0A$$

- 11. Each of these regular expressions is for one of the languages given in Problem 10 above. Identify the correct language for each regular expression.
 - A. _____ 10*
 - B. 0(1 + (0+1)0 + 01*0)*
 - C. 101*01(0+01*0+10*1)*
 - D. $(0+1)^*$
- 12. What are the four language (or grammar) classes of the Chomsky hierarchy? Be sure to mention the type numbers as well as the name of the class.

13. Draw a minimal DFA equivalent to the DFA shown in Figure 4. Show your work.

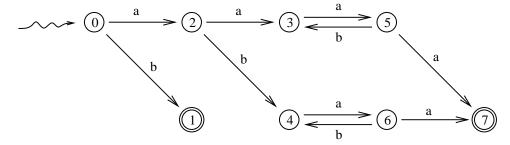


Figure 4

14. Draw a minimal DFA equivalent to the NFA shown in Figure 5. Show your work.

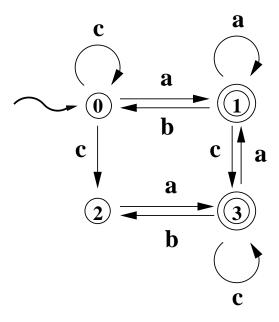


Figure 5