CSC 456/656 Spring 2024 First Examination Problems to Study

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known to science at this time.
 - (i) **F** Every subset of a regular language is regular.
 - (ii) **T** The class of regular languages is closed under intersection.
 - (iii) **O** \mathcal{P} -TIME = \mathcal{NP} .
 - (iv) **T** The class of regular languages is closed under Kleene closure.
 - (v) **T** The class of context-free languages is closed under union.
 - (vi) **F** The class of context-free languages is closed under intersection.
 - (vii) **F** The set of binary numerals for prime numbers is a regular language.
 - (viii) **T** The set of binary numerals for prime numbers is \mathcal{P} -TIME.
 - (ix) **T** The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (x) **F** The complement of any context-free language is context-free.
 - (xi) \mathbf{T} The complement of any recursive (that is, decidable) language is recursive.
 - (xii) **T** If Σ is an alphabet, then Σ^* is a regular language.
 - (xiii) F If L is a language and L^* is a regular language, then L must be a regular language. (Think!)
 - (xiv) T The class of languages which are not regular is closed under intersection. (Think!)
 - (xv) **F** The minimal DFA equivalent to an NFA with n states must have at least 2^n states.
 - (xvi) **O** If a non-derministic machine can solve a given problem in polynomial time, then there must be is a deterministic machine which can solve the same problem in polynomial time.
 - (xvii) \mathbf{T} The complement of any regular language is regular.
 - (xviii) Any context-free language is generated by some ambiguous context-free grammar. \mathbf{T}
 - (xix) Any context-free language is generated by some unambiguous context-free grammar. \mathbf{F}
 - (xx) **F** The Dyck language is regular.
 - (xxi) **T** Every regular language is context-free.
 - (xxii) **F** Every language is decided by some machine.
 - (xxiii) **F** Every language is accepted by some machine.
- 2. A language is context-free if and only if it is accepted by some *push-down automaton*.

- 3. Give definitions of each of the following terms.
 - (a) Symbol. There is no definition. Anything can be a symbol.
 - (b) Alphabet. A finite set of symbols.
 - (c) String over a given alphabet Σ . A finite sequence of members of Σ .
 - (d) Language over a given alphabet Σ . A set of strings over Σ .
- 4. Give an example of a language which is context-free but not regular.

 $\{a^n b^n : n \ge 0\}$

5. Give an example of a language which is not context-free.

 $\{a^n b^n c^n : n \ge 0\}$

6. Let L be the language of all binary strings encoding numbers which are equivalent to 1 modulo 3, where leading zeros are allowed. Thus, $L = \{1, 01, 001, 100, 111, 0100, 0111, 1010, \ldots\}$. Draw a DFA which accepts L. (You need only three states.)

- 7. 20 Let G be the CF grammar given below, where E is the start symbol.
 - (a) Show that G is ambiguous by giving two different **rightmost** derivations for the string x y + z.
 - (b) Which of these two derivations respects the usual precedence of operators? 1. $E \to E E$ 2. $E \to E + E$
 - 3. $E \to x$
 - 4. $E \to y$
 - 5. $E \rightarrow z$

 $E \Rightarrow E - E \Rightarrow x - E \Rightarrow x - E * E \Rightarrow x - y * E \Rightarrow x - y * z$ $E \Rightarrow E * E \Rightarrow E - E * E \Rightarrow x - E * E \Rightarrow x - y * E \Rightarrow x - y * z$

The first derivation is the one that respects the usual precedence of the operators.

9. Write a regular expression for the language accepted by the machine shown in Figure 1.

Figure 1

8. Give a grammar for the language accepted by the NFA shown in Figure 2 below.

- 10. For each of the binary languages described here, identify which of grammars (each with start symbol S) listed below generates that language?
 - (i) (d) All binary strings.
 - (ii) (e) All binary numerals for multiples of three.
 - (iii) (b) All binary strings which have the same number of 0's as 1's.
 - (iv) (a) All binary strings w which have the Dyck property, that is, w has equal number of 0's and 1's, and each prefix of w has at least as many 1's as 0's.
 - (v) (c) All binary numerals for powers of two.
 - (vi) (f) The language accepted by the NFA shown in Figure 3 below.

Figure 3

- (a) $S \to 1S0S \mid \lambda$
- (b) $S \rightarrow AS \mid BS \mid \lambda$ $A \rightarrow 1A0A \mid \lambda$ $A \rightarrow 0B1B \mid \lambda$
- (c) $S \rightarrow 1A$ $A \rightarrow 0A \mid \lambda$
- (d) $S \rightarrow 1S \mid 0S \mid \lambda$

(e)
$$S \rightarrow 1A \mid 0$$

 $A \rightarrow 1B \mid 0C$
 $B \rightarrow 0B \mid 1A \mid \lambda$
 $C \rightarrow 1C \mid 0A$

 $\begin{array}{ll} ({\rm f}) & S \rightarrow 0A \\ & A \rightarrow 0S \,|\, 1S \,|\, 0B \,|\, 1A \,|\, \lambda \\ & B \rightarrow 1B \,|\, 0A \end{array}$

- 11. Each of these regular expressions is for one of the languages given in Problem 10 above. Identify the correct language for each regular expression.
 - A. (iv) or (a) 10^*
 - B. (vi) or (f) $0(1 + (0 + 1)0 + 01^*0)^*$
 - C. (ii) or (e) $0 + 1(01^*0)^*1(1(01^*0)^*1)^*$ (I had the wrong expression!)
 - D. (i) or (d) $(0+1)^*$
- 12. What are the four language (or grammar) classes of the Chomsky hierarchy? Be sure to mention the type numbers as well as the name of the class.

Type 0: unrestricted grammars, recursively enumerable languages.

Type 1: context-sensitive grammars, context-sensitive languages.

Type 2: context-free gramars, context-free languages.

Type 3: regular grammars, regular languages.

13. Draw a minimal DFA equivalent to the DFA shown above

	0	1	2	3	4	5	6	7
0	0	Х	Х	Х	X	Х	Х	Х
1	Х	0	Х	Х	Х	Х	Х	0
2	Х	Х	0	Х	Х	Х	Х	Х
3	Х	Х	Х	0	0	Х	Х	Х
4	Х	Х	Х	0	0	Х	Х	Х
5	Х	Х	Х	Х	Х	0	0	Х
6	Х	Х	Х	Х	X	0	0	Х
7	Х	0	Х	Х	Х	Х	Х	0

14. Draw a minimal DFA equivalent to the NFA shown in Figure 4. Show your work.

	a	b	c
0	1	Ø	02
1	1	0	3
2	3	Ø	Ø
3	1	2	3
02	13	Ø	3
13	1	2	3
Ø	Ø	Ø	Ø