CS 456/656 Study Guide for Examination March 6, 2024

A binary language is a subset of Σ^{*}, where $\Sigma=\{0,1\}$, and a binary function is a function $\Sigma^{*} \rightarrow \Sigma^{*}$. The unary alphabet is $\{1\}$. The first written numerals were probably written in unary. We still use those numerals today.

1. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time.
(i) _--_--_ Every subset of a regular language is regular.
(ii) _-_-_-_ The complement of a CFL is always a CFL.
(iii) _-_--_-- The class of context-free languages is closed under union.
(iv) -------- The class of context-free languages is closed under intersection.
(v) -------- The set of binary numerals for multiples of 23 is regular.
(vi) _-_-_-_ The set of binary numerals for prime numbers is in \mathcal{P}-TIME.
(vii) ___-_ Every PDA is equivalent to some DPDA.
(viii) _-_-_-_ Every language is countable.
(ix) The set of languages over the binary alphabet is countable.
(x) $\mathcal{P}=\mathcal{N} \mathcal{P}$.
(xi) The complement of any \mathcal{P}-Time language is \mathcal{P}-Time.
(xii) The complement of any $\mathcal{N} \mathcal{P}$ language is $\mathcal{N} \mathcal{P}$.
(xiii) The complement of any decidable language is decidable.
(xiv) The complement of any undecidable language is undecidable.
2. Give an unambiguous CFG which generates a language not accepted by any DPDA.
3. Suppose L is a problem such that you can check any suggested solution in polynomial time. Which one of these statements is certainly true?
(i) L is \mathcal{P}.
(ii) L is $\mathcal{N P}$.
(iii) L is $\mathcal{N} \mathcal{P}$-complete.
4. L be the language of all binary strings in which each 0 is followed by 1 . Draw a DFA which accepts L.
5. Consider the NFA M pictured below.

Construct a minimal DFA equivalent to M.
6. Let G_{1} be the CF grammar given below. Prove that G_{1} is ambiguous by giving two different parse trees for the string iiwaea.

1. $S \rightarrow a$
2. $S \rightarrow w S$
3. $S \rightarrow i S$
4. $S \rightarrow i S e S$
5. The CNF grammar G_{2}, given below, is equivalent to the grammar G_{1} given in Problem 6. Use the CYK algorithm to prove that iiwaea is generated by G_{2}.
6. $S \rightarrow a$
7. $S \rightarrow W S$
8. $W \rightarrow w$
9. $S \rightarrow I S$
10. $S \rightarrow A B$
11. $A \rightarrow I S$
12. $B \rightarrow E S$
13. $E \rightarrow e$
14. $I \rightarrow i$

15. Give a grammar, with at most 3 variables, for the language accepted by the follwing NFA.

16. Give a regular expression for the language accepted by the following NFA

17. Let L be the language consisting of all strings over $\{a, b\}$ which have equal numbers of each symbol. Give a CFG for L.
18. Design a DPDA which accepts the language described in Problem 10.
19. True or False. If the question is currently open, write "O" or "Open."
(i) _------- Every subset of a regular language is regular.
(ii) $-----\mathcal{P}=\mathcal{N} \mathcal{P}$.
(iii) -------- The complement of any \mathcal{P}-TIME language is \mathcal{P}-TIME.
(iv) _--_--_ The complement of any $\mathcal{N P}$ language is $\mathcal{N} \mathcal{P}$.
(v) _-_-_-_ The complement of any \mathcal{P}-SPACE language is \mathcal{P}-SPACE. (Think.
(vi) ------- The complement of every recursive language is recursive.
(vii) -------- The complement of every recursively enumerable language is recursively enumerable.
(viii) _-_-_-_ If a language L is recognized by an NFA with n states, then L has pumping length n.
(ix) -------- Given any unambiguous context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
(x) _------ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
(xi) _------ The union of any two context-free languages is context-free.
(xii) _------ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
(xiii) - $-\ldots-\ldots$ Let π be the ratio of the circumference of a circle to its diameter. Then π is recursive.
(xiv) _-_---- The Kleene closure of any recursive language is recursive.
(xv) _------ If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then all one-way encoding systems are breakable in polynomial time.
(xvi) _-_-_-_ A language L is in $\mathcal{N} \mathcal{P}$ if and only if there is a polynomial time reduction of L to SAT.
(xvii) ------- The intersection of any context-free language with any regular language is context-free.
(xviii) ------- Let L be the set of all strings of the form $\left\langle G_{1}\right\rangle\left\langle G_{2}\right\rangle$ where G_{1} and G_{2} are equivalent contextfree grammars. Then L is recursively enumerable.
(xix) _-_-_ If L_{1} reduces to L_{2} in polynomial time, and if L_{2} is $\mathcal{N} \mathcal{P}$, and if L_{1} is $\mathcal{N} \mathcal{P}$-complete, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.
(xx) --_--- The question of whether two regular expressions are equivalent is $\mathcal{N} \mathcal{P}$-complete. (Do not guess. Look it up.)
(xxi) ------- The intersection of any two context-free languages is context-free.
(xxii) _-_-_ If L_{1} reduces to L_{2} in polynomial time, and if L_{2} is $\mathcal{N} \mathcal{P}$, then L_{1} must be $\mathcal{N} \mathcal{P}$.
(xxiii) _-_-_-_ Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
(xxiv) _-_-_-- The language of all regular expressions over the alphabet $\{a, b\}$ is a regular language.
(xxv) ------- The equivalence problem for $\mathrm{C}++$ programs is recursive.
(xxvi) ------- Every function that can be mathematically defined is recursive.
(xxvii) _-_-_ A language is L is $\mathcal{N P}$ if and only if there is a polynomial time reduction of L to Boolean satisfiability.
(xxviii) _-_--_ If there is a recursive reduction of the halting problem to a language L, then L must be undecidable.
(xxix) _-_-_-_ If there is a recursive reduction of a language L to the halting problem, then L must be undecidable.
($x x x$) -------- The set of rational numbers is countable.
(xxxi) ------- The set of real numbers is countable.
(xxxii) ------- The set of recursive real numbers is countable.
(xxxiii) ------- There are countably many binary functions.
(xxxiv) --_---- There are countably many recursive binary functions.
20. Give a context-free language whose complement is not context-free.
21. State the pumping lemma for regular languages.
22. State the Church-Turing thesis. Why is it important?
23. Explain the verification definition of $\mathcal{N} \mathcal{P}$.
24. Give a polynomial time reduction of the subset sum problem to the partition problem.
25. Prove that every decidable language can be enumerated by some machine in canonical order.
26. Prove that every language which can be enumerated in canonical order by some machine is recursive.
27. Prove that every language which can be enumerated by any machine is recognized by some machine.
28. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time.
(i) The context-free grammar equivalence problem is co- $\mathcal{R E}$.
(ii) Let $L=\left\{\left(\left\langle G_{1}\right\rangle,\left\langle G_{2}\right\rangle\right)\right\}: G_{1}$ and G_{2} are not equivalent. Then L is recursively enumerable.
(iii) __ The factoring problem for unary numerals is \mathcal{P}-TIME
(iv) ___ The set of all binary numerals for prime numbers is in \mathcal{P}-TIME.
(v) __ If L is a recursively enumerable language, there must be a machine which enumerates L in canonical order.
(vi) The set of all positive real numbers is countable.
(vii) ___ For any alphabet Σ, the set of all recursively enumerable languages over Σ is countable.
(viii) If L is a context-free language over the unary alphabet, then L must be regular.
(ix) _ The union of any two undecidable languages is undecidable.
$(\mathrm{x}) \longrightarrow$ co- $\mathcal{P}-$ TIME $=\mathcal{P}-$ TIME.
29. Give a definition of a recursive real number. (There is more than one correct definition.)
30. Which of these languages (problems) are known to be $\mathcal{N} \mathcal{P}$-complete? If a language, or problem, is known to be $\mathcal{N} \mathcal{P}$-complete, fill in the first circle. If it is either known not to be $\mathcal{N} \mathcal{P}$-complete, or if whether it is $\mathcal{N} \mathcal{P}$-complete is not known at this time, fill in the second circle.
$\bigcirc \bigcirc$ Boolean satisfiability.
$\bigcirc \bigcirc 2-S A T$.
$\bigcirc \bigcirc 3-$ SAT.
$\bigcirc \bigcirc$ Subset sum problem.
\bigcirc Traveling salesman problem.
$\bigcirc \bigcirc \mathrm{C}++$ program equivalence.
$\bigcirc \bigcirc$ Partition.
\bigcirc Regular language membership problem.
$\bigcirc \bigcirc$ Block sorting.
31. State the pumping lemma for context-free languages.
32. Give a polynomial time reduction of 3 SAT to the independent set problem. (Pictures help.)
