CS 456/656 Study Guide for Examination March 6, 2024

A binary language is a subset of Σ^* , where $\Sigma = \{0, 1\}$, and a binary function is a function $\Sigma^* \to \Sigma^*$. The unary alphabet is $\{1\}$. The first written numerals were probably written in unary. We still use those numerals today.

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) _____ Every subset of a regular language is regular.
 - (ii) _____ The complement of a CFL is always a CFL.
 - (iii) _____ The class of context-free languages is closed under union.
 - (iv) _____ The class of context-free languages is closed under intersection.
 - (v) _____ The set of binary numerals for multiples of 23 is regular.
 - (vi) $_$ The set of binary numerals for prime numbers is in \mathcal{P} -TIME.
 - (vii) _____ Every PDA is equivalent to some DPDA.
 - (viii) _____ Every language is countable.
 - (ix) The set of languages over the binary alphabet is countable.
 - (x) $\mathcal{P} = \mathcal{NP}$.
 - (xi) The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (xii) The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (xiii) The complement of any decidable language is decidable.
 - (xiv) The complement of any undecidable language is undecidable.
- 2. Give an unambiguous CFG which generates a language not accepted by any DPDA.
- 3. Suppose L is a problem such that you can check any suggested solution in polynomial time. Which one of these statements is certainly true?
 - (i) L is \mathcal{P} .
 - (ii) L is \mathcal{NP} .
 - (iii) L is \mathcal{NP} -complete.
- 4. L be the language of all binary strings in which each 0 is followed by 1. Draw a DFA which accepts L.
- 5. Consider the NFA M pictured below.

Construct a minimal DFA equivalent to M.

- 6. Let G_1 be the CF grammar given below. Prove that G_1 is ambiguous by giving two different parse trees for the string *iiwaea*.
 - $\begin{array}{ll} 1. \hspace{0.1cm} S \rightarrow a \\ 2. \hspace{0.1cm} S \rightarrow wS \\ 3. \hspace{0.1cm} S \rightarrow iS \\ 4. \hspace{0.1cm} S \rightarrow iSeS \end{array}$
- 7. The CNF grammar G_2 , given below, is equivalent to the grammar G_1 given in Problem 6. Use the CYK algorithm to prove that *iiwaea* is generated by G_2 .

8. Give a grammar, with at most 3 variables, for the language accepted by the following NFA.

9. Give a regular expression for the language accepted by the following NFA

- 10. Let L be the language consisting of all strings over $\{a, b\}$ which have equal numbers of each symbol. Give a CFG for L.
- 11. Design a DPDA which accepts the language described in Problem 10.

- 12. True or False. If the question is currently open, write "O" or "Open."
 - (i) _____ Every subset of a regular language is regular.
 - (ii) $\dots \mathcal{P} = \mathcal{NP}$.
 - (iii) _____ The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (iv) _____ The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (v) _____ The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE. (Think.
 - (vi) _____ The complement of every recursive language is recursive.
 - (vii) _____ The complement of every recursively enumerable language is recursively enumerable.
 - (viii) ______ If a language L is recognized by an NFA with n states, then L has pumping length n.
 - (ix) _____ Given any unambiguous context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
 - (x) _____ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
 - (xi) _____ The union of any two context-free languages is context-free.
 - (xii) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
 - (xiii) _____ Let π be the ratio of the circumference of a circle to its diameter. Then π is recursive.
 - (xiv) _____ The Kleene closure of any recursive language is recursive.
 - (xv) _____ If $\mathcal{P} = \mathcal{NP}$, then all one-way encoding systems are breakable in polynomial time.
 - (xvi) $_____$ A language L is in \mathcal{NP} if and only if there is a polynomial time reduction of L to SAT.
 - (xvii) _____ The intersection of any context-free language with any regular language is context-free.
 - (xviii) _____ Let L be the set of all strings of the form $\langle G_1 \rangle \langle G_2 \rangle$ where G_1 and G_2 are equivalent contextfree grammars. Then L is recursively enumerable.
 - (xix) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , and if L_1 is \mathcal{NP} -complete, then L_2 must be \mathcal{NP} -complete.
 - (xx) _____ The question of whether two regular expressions are equivalent is \mathcal{NP} -complete. (Do not guess. Look it up.)
 - (xxi) _____ The intersection of any two context-free languages is context-free.
 - (xxii) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , then L_1 must be \mathcal{NP} .

- (xxiii) _____ Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
- (xxiv) _____ The language of all regular expressions over the alphabet $\{a, b\}$ is a regular language.
- (xxv) _____ The equivalence problem for C++ programs is recursive.
- (xxvi) _____ Every function that can be mathematically defined is recursive.
- (xxvii) _____ A language is L is \mathcal{NP} if and only if there is a polynomial time reduction of L to Boolean satisfiability.
- (xxviii) $____$ If there is a recursive reduction of the halting problem to a language L, then L must be undecidable.
- (xxix) $_$ If there is a recursive reduction of a language L to the halting problem, then L must be undecidable.
- (xxx) _____ The set of rational numbers is countable.
- (xxxi) _____ The set of real numbers is countable.
- (xxxii) _____ The set of recursive real numbers is countable.
- (xxxiii) _____ There are countably many binary functions.
- (xxxiv) _____ There are countably many recursive binary functions.
- 13. Give a context-free language whose complement is not context-free.
- 14. State the pumping lemma for regular languages.
- 15. State the Church-Turing thesis. Why is it important?
- 16. Explain the verification definition of \mathcal{NP} .
- 17. Give a polynomial time reduction of the subset sum problem to the partition problem.
- 18. Prove that every decidable language can be enumerated by some machine in canonical order.
- 19. Prove that every language which can be enumerated in canonical order by some machine is recursive.
- 20. Prove that every language which can be enumerated by any machine is recognized by some machine.
- 21. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) _____ The context-free grammar equivalence problem is $co-\mathcal{RE}$.
 - (ii) <u>Let $L = \{(\langle G_1 \rangle, \langle G_2 \rangle)\}$ </u>: G_1 and G_2 are not equivalent. Then L is recursively enumerable.
 - (iii) _____ The factoring problem for unary numerals is \mathcal{P} -TIME

- (iv) _____ The set of all binary numerals for prime numbers is in \mathcal{P} -TIME.
- (v) _____ If L is a recursively enumerable language, there must be a machine which enumerates L in canonical order.
- (vi) _____ The set of all positive real numbers is countable.
- (vii) _____ For any alphabet Σ , the set of all recursively enumerable languages over Σ is countable.
- (viii) _____ If L is a context-free language over the unary alphabet, then L must be regular.
- (ix) _____ The union of any two undecidable languages is undecidable.
- (x) $_$ co- \mathcal{P} -time= \mathcal{P} -time.
- 22. Give a definition of a recursive real number. (There is more than one correct definition.)
- 23. Which of these languages (problems) are **known** to be \mathcal{NP} -complete? If a language, or problem, is known to be \mathcal{NP} -complete, fill in the first circle. If it is either known not to be \mathcal{NP} -complete, or if whether it is \mathcal{NP} -complete is not known at this time, fill in the second circle.
 - $\bigcirc \quad \bigcirc \quad \bigcirc \quad$ Boolean satisfiability.
 - \bigcirc \bigcirc 2–SAT.
 - \bigcirc \bigcirc 3–SAT.
 - $\bigcirc \quad \bigcirc \quad$ Subset sum problem.
 - $\bigcirc \quad \bigcirc \quad \bigcirc \quad$ Traveling salesman problem.
 - \bigcirc \bigcirc C++ program equivalence.
 - \bigcirc \bigcirc Partition.
 - \bigcirc \bigcirc Regular language membership problem.
 - \bigcirc \bigcirc Block sorting.
- 24. State the pumping lemma for context-free languages.
- 25. Give a polynomial time reduction of 3SAT to the independent set problem. (Pictures help.)