University of Nevada, Las Vegas Computer Science 456/656 Spring 2024
 CSC 456/656 Fall 2024 Answers to Third Examination April 10, 2024

Name:
The entire test is 365 points.
A binary function is defined to be a function F on binary strings such that, for each binary string $w, F(w)$ is a binary string. (Of course, the strings could be numerals.)

1. True or False.[5 points each] $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time.
(i) \mathbf{T} Every language is a subset of some regular language.
(ii) O If L is any \mathcal{P}-TIME language, there is an $\mathcal{N C}$ reduction of the Boolean circuit problem (CVP) to L.
(iii) \mathbf{T} The concatenation of any two RE languages is RE.
(iv) \mathbf{F} Every function that can be mathematically defined is bounded by some recursive function.
(v) \mathbf{T} There are uncountably many languages over the binary alphabet.
(vi) \mathbf{F} There are uncountably many RE languages over the binary alphabet.
(vii) \mathbf{T} There is an algorithm which determines whether a given list of n positive integers has a sublist whose total is a given number S.
(viii) \mathbf{T} If L_{1} is $\mathcal{N} \mathcal{P}$-complete and L_{2} is $\mathcal{N P}$ and there is a \mathcal{P}-TIME reduction of L_{1} to L_{2}, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.
(ix) T Nick's Class is closed under Kleene closure.
(x) T Any computation that can be done by any machine can be done by some Pascal program.
(xi) \mathbf{T} Multiplication of integer matrices is $\mathcal{N C}$.
(xii) \mathbf{T} There is an \mathcal{P}-SPACE algorithm which decides SAT.
(xiii) O Every dynamic program problem can be worked by polynomially many processors in polylogarithmic time.
(xiv) \mathbf{F} Let L be any undecidable $\mathcal{R E}$ language, and let M_{L} be a machine which accepts L. For any string $w \in M$, let $F_{L}(w)$ be the number of steps M_{L} executes, if its input is w. Now define $T_{L}(n)=\left\{\max F_{L}(w): w \in L\right.$ and $\left.|w|=n\right\}$. Then T_{L} is recursive.
(xv) \mathbf{O} There is a polynomial time reduction of the subset sum problem to 2-SAT.
(xvi) \mathbf{T} Every \mathcal{P}-Time problem has an $\mathcal{N C}$ reduction to the Circuit Value Problem.
(xvii) \mathbf{T} If a language L is accepted by a non-deterministic machine, then L must be accepted by some deterministice machine.
(xviii) \mathbf{T} Every $\mathcal{N C}$ language is context-free.
(xix) \mathbf{T} The language $\left\{a^{n} b^{n} c^{n} d^{n}: n \geq 0\right\}$ is $\mathcal{N C}$.
(xx) F The set of all languages over the binary alphabet is countable.
(xxi) \mathbf{T} The context-free grammar equivalence problem is co- $\mathcal{R E}$.
(xxii) \mathbf{T} The set of all binary numerals for prime numbers is \mathcal{P}-TIME.
(xxiii) \mathbf{T} If L is a context-free language over the unary alphabet, then L must be regular.
(xxiv) \mathbf{F} The union of any two undecidable languages is undecidable.
(xxv) \mathbf{T} co- \mathcal{P}-TIME $=\mathcal{P}$-TIME.
(xxvi) \mathbf{O} There exists a one-way function.
(xxvii) \mathbf{T} The complement of any \mathcal{P}-SPACE language is \mathcal{P}-SPACE.
(xxviii) \mathbf{T} The jigsaw puzzle problem is $\mathcal{N P}$ complete.
(xxix) \mathbf{T} The furniture mover's problem is \mathcal{P}-SPACE complete.
(xxx) T The complement of any undecidable language is undecidable.
(xxxi) T If a Boolean expression is satisfiable, there is a polynomial time proof that it is satisfiable.
(xxxii) \mathbf{T} If there is a recursive reduction from the halting problem to L, then L must be undecidable.
(xxxiii) \mathbf{F} If L is undecidable, there must be a recursive reduction from the halting problem to L.
2. Fill in the blanks.
(a) [5 points] If L_{1} is $\mathcal{N} \mathcal{P}$-complete and L_{2} is $\mathcal{N P}$, and there is a polynomial time reduction of L_{1} to L_{2}, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.
(b) [5 points] A language is decidable or recursive. if and only if it is both RE and co-RE.
3. Here is a list of problems or languages. For each problem, enter \mathbf{T} if it is known to be $\mathcal{N} \mathcal{P}$-complete, \mathbf{F} if it is not known to be $\mathcal{N} \mathcal{P}$-complete. [5 points each]
(a) \mathbf{T} SAT
(b) F 2-SAT
(c) \mathbf{T} 3-SAT
(d) \mathbf{F} Rush Hour
(e) \mathbf{F} The Boolean circuit problem.
(f) \mathbf{F} Integer factoring, using binary numerals.
(g) \mathbf{T} The tiling problem.
(h) \mathbf{F} The furniture mover's problem.
(i) \mathbf{T} The bin packing problem. Given a set of bins, each with a given capacity, and given a set of items, can all the items be packed into the bins?
4. [20 points] Explain how to find the maximum of a list of n integers in logarithmic time using n processors.
partition the list into pairs. If there is one left over, call it a pair. Find the maximum of each pair in $O(1)$ time, using n processors in parallel, All these maxima form a new list half as long as the original. Repeat the process until there is only one number left. That will be the maximum of the original list.
5. [20 points] Give a definition of a recursive real number. (There is more than one correct definition.)

Each of these is a correct answer. A real number s is recursive if:

- There is a program that runs forever, writing the decimal expansion of x.
- There is a program that, given an integer n, writes the $n^{\text {th }}$ digit of the decimal expansion of x.
- There is a program that, given a rational number q, decides whether $q<x$.
- There is a program that, given a positive integer q, writes the integer p such that $\frac{p}{q} \leq x<\frac{p+1}{q}$

Those are not the only ones.
7. [20 points] State the pumping lemma for context-free languages.
8. [20 points] Let G be the following context-free gammar with start symbol E. Stack states are indicated. An LALR parser for G is given below. Give a complete computation of the parser if the input string is $x-x *-(-x+x)$.

1. $E \rightarrow E_{1,11}+{ }_{2} E_{3}$
2. $E \rightarrow E_{1,11}{ }_{4} E_{5}$
3. $E \rightarrow E_{1,3,5,11} *_{6} E_{7}$
4. $E \rightarrow-{ }_{8} E_{9}$
5. $E \rightarrow\left({ }_{10} E_{11}\right)_{12}$
6. $E \rightarrow x_{13}$

	x	+	-	$*$	$($	$)$	$\$$	E
0	s13		s8		s10			1
1		s2	s4	s6			halt	
2	s13		s8		s10			3
3		r1	r1	s6		r1	r1	
4	s13		s8		s10			5
5		r2	r2	s6		r2	r2	
6	s13		s8		s10			7
7		r3	r3	r3		r3	r3	
8	s13		s8		s10			9
9		r4	r4	r4		r4	r4	
10	s13		s8		s10			11
11		s2	s4	s6		s12		
12		r5	r5	r5		r5	r5	
13		r6	r6	r6		r6	r6	

$\$_{0}$	$x-x *-(-x+x)$		
$\$_{0} x_{13}$	$-x *-(-x+x)$		$s 13$
$\$_{0} E_{1}$	$-x *-(-x+x)$	6	$r 6$
$\$_{0} E_{1}{ }_{4}$	$x *-(-x+x)$	6	$s 4$
$\$_{0} E_{1}-{ }_{4} x_{13}$	* $-(-x+x)$	6	$s 13$
$\$_{0} E_{1}-{ }_{4} E_{5}$	* $-(-x+x)$	66	$r 6$
$\$_{0} E_{1}-{ }_{4} E_{5} *_{6}-_{8}$	$(-x+x)$	66	$s 8$
$\$_{0} E_{1}-{ }_{4} E_{5} *_{6}-{ }_{8}(10$	$-x+x)$	66	s10
$\$_{0} E_{1}-{ }_{4} E_{5} *_{6}-{ }_{8}\left({ }_{10}-8\right.$	$x+x)$	66	$s 8$
$\$_{0} E_{1}-{ }_{4} E_{5} *{ }_{6}-{ }_{8}\left({ }_{10}-{ }_{8} x_{13}\right.$	+x)	66	s13
$\$_{0} E_{1}-{ }_{4} E_{5} * 6-{ }_{8}\left({ }_{10}-{ }_{8} E_{9}\right.$	+x)	666	$r 6$
$\$_{0} E_{1}-{ }_{4} E_{5} * 6-{ }_{8}\left({ }_{10} E_{11}\right.$	+x)	6664	$r 4$
$\$_{0} E_{1}-_{4} E_{5} *_{6}-{ }_{8}\left({ }_{10} E_{11}+2\right.$	$x)$	6664	$s 2$
$\$_{0} E_{1}-{ }_{4} E_{5} * 6-{ }_{8}\left({ }_{10} E_{11}+{ }_{2} x_{13}\right.$)	6664	s12
$\$_{0} E_{1}-{ }_{4} E_{5} * 6-{ }_{8}\left({ }_{10} E_{11}+{ }_{2} E_{3}\right.$)	66646	$r 6$
$\$_{0} E_{1}-{ }_{4} E_{5} * 6-{ }_{8}\left({ }_{10} E_{11}\right.$)	666461	$r 1$
$\$_{0} E_{1}-{ }_{4} E_{5} *_{6}-{ }_{8}\left({ }_{10} E_{11}\right)_{12}$		666461	$s 12$
$\$_{0} E_{1}-{ }_{4} E_{5} *_{6}-{ }_{8} E_{9}$		6664615	$r 5$
$\$_{0} E_{1}{ }_{4} E_{5} *_{6} E_{7}$		66646154	$r 4$
$\$_{0} E_{1}-{ }_{4} E_{5}$		666461543	$r 3$
$\$_{0} E_{1}$		6664615432	$r 2$
halt			

9. Consider the following well-known complexity classes:
$\mathcal{N C} \subseteq \mathcal{P}-$ TIME $\subseteq \mathcal{N} \mathcal{P} \subseteq \mathcal{P}$-SPACE $\subseteq \mathbf{E X P}$-TIME $\subseteq \mathbf{E X P}$-SPACE
(a) [5 points] Which of the above complexity classes is the smallest class which is known to contain SAT, the Boolean satisfiability problem? $\mathcal{N} \mathcal{P}$
(b) [5 points] Which of the above complexity classes is the smallest class which is known to contain the connectivity problem for graphs? \mathcal{P}-TIME
(c) [5 points] Which of the above complexity classes is the smallest class which is known to contain the context-free language membership problem? $\mathcal{N C}$
(d) [5 points] Which of the above complexity classes is the smallest class which is known to contain every sliding block problem? \mathcal{P}-SPACE
(e) [5 points] Which of the above complexity classes is the smallest class which is known to contain integer matrix multiplication? $\mathcal{N C}$
10. [20 points] Give the verifier definition of the class $\mathcal{N} \mathcal{P}$. A language L is $\mathcal{N} \mathcal{P}$ if and only if there is some machine M and some integer k such that:
(a) For any string $w \in L$ there is a string c such that M accepts (w, c) within n^{k} steps, where $n=|w|$
(b) For any string $w \notin L M$ does not accept (w, c) for any string c.
11. [20 points] Prove that the halting problem is undecidable.

The proof is in Tests/stdy3ans.pdf.

