University of Nevada, Las Vegas Computer Science 456/656 Spring 2024

CSC 456/656 Fall 2024 Answers to Third Examination April 10, 2024

Name:_____

The entire test is 365 points.

A <u>binary function</u> is defined to be a function F on binary strings such that, for each binary string w, F(w) is a binary string. (Of course, the strings could be numerals.)

- 1. True or False. [5 points each] T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) **T** Every language is a subset of some regular language.
 - (ii) **O** If L is any \mathcal{P} -TIME language, there is an \mathcal{NC} reduction of the Boolean circuit problem (CVP) to L.
 - (iii) **T** The concatenation of any two RE languages is RE.
 - (iv) **F** Every function that can be mathematically defined is bounded by some recursive function.
 - (v) **T** There are uncountably many languages over the binary alphabet.
 - (vi) **F** There are uncountably many RE languages over the binary alphabet.
 - (vii) **T** There is an algorithm which determines whether a given list of n positive integers has a sublist whose total is a given number S.
 - (viii) **T** If L_1 is \mathcal{NP} -complete and L_2 is \mathcal{NP} and there is a \mathcal{P} -TIME reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -COMPLETE.
 - (ix) **T** Nick's Class is closed under Kleene closure.
 - (x) **T** Any computation that can be done by any machine can be done by some Pascal program.
 - (xi) **T** Multiplication of integer matrices is \mathcal{NC} .
 - (xii) **T** There is an \mathcal{P} -SPACE algorithm which decides SAT.
 - (xiii) **O** Every dynamic program problem can be worked by polynomially many processors in polylogarithmic time.
 - (xiv) **F** Let *L* be any undecidable \mathcal{RE} language, and let M_L be a machine which accepts *L*. For any string $w \in M$, let $F_L(w)$ be the number of steps M_L executes, if its input is *w*. Now define $T_L(n) = \{\max F_L(w) : w \in L \text{ and } |w| = n\}$. Then T_L is recursive.
 - (xv) **O** There is a polynomial time reduction of the subset sum problem to 2-SAT.
 - (xvi) **T** Every \mathcal{P} -TIME problem has an \mathcal{NC} reduction to the Circuit Value Problem.

- (xvii) **T** If a language L is accepted by a non-deterministic machine, then L must be accepted by some deterministice machine.
- (xviii) **T** Every \mathcal{NC} language is context-free.
- (xix) **T** The language $\{a^n b^n c^n d^n : n \ge 0\}$ is \mathcal{NC} .
- (xx) **F** The set of all languages over the binary alphabet is countable.
- (xxi) \mathbf{T} The context-free grammar equivalence problem is co- \mathcal{RE} .
- (xxii) **T** The set of all binary numerals for prime numbers is \mathcal{P} -TIME.
- (xxiii) **T** If L is a context-free language over the unary alphabet, then L must be regular.
- (xxiv) **F** The union of any two undecidable languages is undecidable.
- (xxv) **T** co- \mathcal{P} -TIME= \mathcal{P} -TIME.
- (xxvi) **O** There exists a one-way function.
- (xxvii) **T** The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE.
- (xxviii) **T** The jigsaw puzzle problem is \mathcal{NP} complete.
- (xxix) **T** The furniture mover's problem is \mathcal{P} -SPACE complete.
- (xxx) **T** The complement of any undecidable language is undecidable.
- (xxxi) **T** If a Boolean expression is satisfiable, there is a polynomial time proof that it is satisfiable.
- (xxxii) **T** If there is a recursive reduction from the halting problem to L, then L must be undecidable.
- (xxxiii) **F** If L is undecidable, there must be a recursive reduction from the halting problem to L.
- 2. Fill in the blanks.
 - (a) [5 points] If L_1 is \mathcal{NP} -complete and L_2 is \mathcal{NP} , and there is a polynomial time reduction of L_1 to L_2 , then L_2 must be \mathcal{NP} -COMPLETE.
 - (b) [5 points] A language is decidable or recursive. if and only if it is both RE and co-RE.
- 3. Here is a list of problems or languages. For each problem, enter **T** if it is known to be \mathcal{NP} -complete, **F** if it is not known to be \mathcal{NP} -complete. [5 points each]
 - (a) **T** SAT
 - (b) **F** 2-SAT
 - (c) **T** 3-SAT
 - (d) F Rush Hour
 - (e) **F** The Boolean circuit problem.
 - (f) **F** Integer factoring, using binary numerals.
 - (g) \mathbf{T} The tiling problem.
 - (h) **F** The furniture mover's problem.

- (i) **T** The <u>bin packing</u> problem. Given a set of bins, each with a given capacity, and given a set of items, can all the items be packed into the bins?
- 4. [20 points] Explain how to find the maximum of a list of n integers in logarithmic time using n processors.

partition the list into pairs. If there is one left over, call it a pair. Find the maximum of each pair in O(1) time, using n processors in parallel, All these maxima form a new list half as long as the original. Repeat the process until there is only one number left. That will be the maximum of the original list.

6. [20 points] Give a definition of a recursive real number. (There is more than one correct definition.)

Each of these is a correct answer. A real number s is recursive if:

- There is a program that runs forever, writing the decimal expansion of x.
- There is a program that, given an integer n, writes the n^{th} digit of the decimal expansion of x.
- There is a program that, given a rational number q, decides whether q < x.
- There is a program that, given a positive integer q, writes the integer p such that $\frac{p}{q} \leq x < \frac{p+1}{q}$

Those are not the only ones.

- 7. [20 points] State the pumping lemma for context-free languages.
- 8. [20 points] Let G be the following context-free gammar with start symbol E. Stack states are indicated. An LALR parser for G is given below. Give a complete computation of the parser if the input string is x - x * -(-x + x).

0	s13		$\mathbf{s8}$		s10			1
1		s2	s4	s6			halt	
2	s13		$\mathbf{s8}$		s10			3
3		r1	r1	s6		r1	r1	
4	s13		$\mathbf{s8}$		s10			5
5		r2	r2	s6		r2	r2	
6	s13		$\mathbf{s8}$		s10			7
7		r3	r3	r3		r3	r3	
8	s13		$\mathbf{s8}$		s10			9
9		r4	r4	r4		r4	r4	
10	s13		$\mathbf{s8}$		s10			11
11		s2	s4	s6		s12		
12		r5	r5	r5		r5	r5	
13		r6	r6	r6		r6	r6	

\$ ₀	$x - x \ast -(-x + x)$		
$x_0 x_{13}$	-x*-(-x+x)		s13
$_0E_1$	-x*-(-x+x)	6	r6
$0E_1 - 4$	x * -(-x + x)	6	s4
$B_0 E_1 - x_{13}$	* - (-x + x)	6	s13
$B_0 E_1 - E_5$	* - (-x + x)	66	r6
$B_0E_1 - E_5 * E_6 - 8$	(-x+x)	66	s8
$b_0 E_1 - 4 E_5 *_6 - 8(10)$	-x+x)	66	s10
$b_0 E_1 - 4 E_5 *_6 - 8(10 - 8)$	(x+x)	66	s8
$b_0 E_1 - 4 E_5 *_6 - 8(10 - 8x_{13})$	+x)	66	s13
$b_0 E_1 - 4 E_5 *_6 - 8(10 - 8E_9)$	+x)	666	r6
$b_0 E_1 - 4 E_5 *_6 - 8(10E_{11})$	+x)	6664	r4
$b_0 E_1 - 4 E_5 *_6 - 8(10E_{11} + 2$	x)	6664	s2
$b_0 E_1 - 4 E_5 *_6 - 8(10E_{11} + 2x_{13})$)	6664	s12
$b_0 E_1 - 4 E_5 *_6 - 8(10E_{11} + 2E_3)$)	66646	r6
$b_0 E_1 - 4 E_5 *_6 - 8(10E_{11})$)	666461	r1
$b_0 E_1 - 4 E_5 *_6 - 8(10E_{11})_{12}$		666461	s12
$B_0E_1 - E_5 * E_6 - E_9$		6664615	r5
$B_0E_1 - E_5 * E_7$		66646154	r4
$B_0 E_1 - E_5$		666461543	r3
$_0E_1$		6664615432	r2
halt			

- 9. Consider the following well-known complexity classes: $\mathcal{NC} \subseteq \mathcal{P}$ -time $\mathcal{NP} \subseteq \mathcal{P}$ -space $\subseteq \mathbf{EXP}$ -time $\subseteq \mathbf{EXP}$ -space
 - (a) [5 points] Which of the above complexity classes is the smallest class which is known to contain SAT, the Boolean satisfiability problem? NP
 - (b) [5 points] Which of the above complexity classes is the smallest class which is known to contain the connectivity problem for graphs? \mathcal{P} -TIME
 - (c) [5 points] Which of the above complexity classes is the smallest class which is known to contain the context-free language membership problem? \mathcal{NC}
 - (d) [5 points] Which of the above complexity classes is the smallest class which is known to contain every sliding block problem? \mathcal{P} -SPACE
 - (e) [5 points] Which of the above complexity classes is the smallest class which is known to contain integer matrix multiplication? \mathcal{NC}

- 10. [20 points] Give the verifier definition of the class \mathcal{NP} . A language L is \mathcal{NP} if and only if there is some machine M and some integer k such that:
 - (a) For any string $w \in L$ there is a string c such that M accepts (w, c) within n^k steps, where n = |w|
 - (b) For any string $w \notin L M$ does not accept (w, c) for any string c.
- 11. [20 points] Prove that the halting problem is undecidable.

The proof is in Tests/stdy3ans.pdf.