$\mathcal{N C}$ Addition

We assume that we have two length n binary numerals, $\langle x\rangle$ and $\langle y\rangle$. We can compute the binary numeral $\langle x+y\rangle$ in $O(\log n)$ time using $O(n)$ processors; the computation is thus in the class $\mathcal{N C}$.

In our example, $n=32$. The numerals $\langle x\rangle$ and $\langle y\rangle$ are shown in the first to rows of the matrix below; the leftmost bit is the $31^{\text {st }}$ bit, while the rightmost bit is the $0^{\text {th }}$ bit. The third row shows the save bits, the sequence of bits $s_{31}, \ldots s_{0}$ obtained by adding bits of x and y modulo 2 .
Our goal is to compute the 33 bit numeral $\langle x+y\rangle$. Let c_{i} be the carry bit from the $(i-1)^{\text {st }}$ place to the $i^{\text {th }}$ place. Since there is no carry bit to the $0^{\text {th }}$ place, we have $c_{0}=0$. The $i^{\text {th }}$ bit of $\langle x+y\rangle$ is $s_{i}+c_{i} \% 2$.

The most difficult part of this problem is computing the carry bits $c_{32}, c_{31}, \ldots c_{1}$ in logarithmic time. You might guess that that is impossible, since a change in the $0^{\text {th }}$ place could effect all carry bits. Our trick is to consider both possibilities at each place simultaneously.

Places and Blocks

We define Place $[i]$ to be consist of the $1^{\text {th }}$ bits of x and y. In our example, Place $[0]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, Place $[1]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, etc. For $i \geq j$, let Block $[i, j]=$ Place $[i]$ Place $[i-1] \cdots$ Place $[j]$.
Each block defines a function $F[i, j]$ from $\{0,1\}$ to $\{0,1\} \operatorname{Block}[i, j]$ defines a function from c_{j} to c_{i+1}. TypeBlock $[i, j] \in\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ as follows

$$
\text { Type Block }[i, j]=\left\{\begin{array}{l}
\mathrm{A} \text { if } c_{i+1}=0 \\
\mathrm{~B} \text { if } c_{i+1}=c_{j} \\
\mathrm{C} \text { if } c_{i+1}=1
\end{array}\right.
$$

We first write the type of each place in the third row of the table using the rules:

$$
\begin{aligned}
& \text { Type }\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\mathrm{A} \\
& \text { Type }\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\text { Type }\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\mathrm{B} \\
& \text { Type }\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\mathrm{C}
\end{aligned}
$$

For example, TypePlace[5] = A, Type Place[4] = C, and TypePlace[3] = TypePlace[2] = B, We fill in the rest of the table using type algebra, defined by the matrix:

	A	B	C
A	A	A	A
B	A	B	C
C	C	C	C

In five steps, we compute the types of concatenations of blocks of length powers of 2 . We compute the types of 16 blocks of size 2 , then 8 blocks of size 4 , then 4 blocks of size 8 , then 2 blocks of size 16 , and finally one block of size 32 .

Since $c_{0}=0$, we have $c_{i}=\left\{\begin{array}{l}0 \text { if TypeBlock }[i+1,0] \in\{\mathrm{A}, \mathrm{B}\} \\ 1 \text { if TypeBlock }[i+1,0]=\mathrm{C}\end{array}\right.$

We compute all Type Block[i-1,0], by concatenating logarithmically many blocks of size a power of 2 . For example, Block $[20,0]=$ Block $[20,20]$ Block[19, 16] Block[15, 0]. Using the values of Type Block $[i-1,0]$ (not shown in the figure) for all i, we compute all c_{i}. For example, Type $[20,0]=\mathrm{CCA}=\mathrm{C}$, thus $c_{21}=$ 1. Each c_{i} is shown in the figure to the left of $\operatorname{Block}[i-1,0]$. Finally, we write the carry bits into the first row of the table below, then copy the save bits into the second row, and use addition modulo 2 to compute the bits of $x+y$, which are in the third row.

