
NC Addition

We assume that we have two length n binary numerals, 〈x〉 and 〈y〉. We can compute the binary
numeral 〈x+ y〉 in O(logn) time using O(n) processors; the computation is thus in the class NC.

In our example, n = 32. The numerals 〈x〉 and 〈y〉 are shown in the first to rows of the matrix
below; the leftmost bit is the 31st bit, while the rightmost bit is the 0th bit. The third row shows
the save bits, the sequence of bits s31, . . . s0 obtained by adding bits of x and y modulo 2.

Our goal is to compute the 33 bit numeral 〈x+ y〉. Let ci be the carry bit from the (i− 1)st place
to the ith place. Since there is no carry bit to the 0th place, we have c0 = 0. The ith bit of 〈x+ y〉
is si + ci%2.

The most difficult part of this problem is computing the carry bits c32, c31, . . . c1 in logarithmic
time. You might guess that that is impossible, since a change in the 0th place could effect all
carry bits. Our trick is to consider both possibilities at each place simultaneously.

Places and Blocks

We define Place[i] to be consist of the ıth bits of x and y. In our example, Place[0] =
[

1

1

]

,

Place[1] =
[

0

1

]

, etc. For i ≥ j, let Block[i, j] = Place[i]Place[i− 1] · · ·Place[j].

Each block defines a function F [i, j] from {0, 1} to {0, 1} Block[i, j] defines a function from cj to
ci+1. TypeBlock[i, j] ∈ {A,B,C} as follows

TypeBlock[i, j] =







A if ci+1 = 0
B if ci+1 = cj
C if ci+1 = 1

We first write the type of each place in the third row of the table using the rules:

Type
[

0

0

]

= A

Type
[

0

1

]

= Type
[

1

0

]

= B

Type
[

1

1

]

= C

For example, TypePlace[5] = A, TypePlace[4] = C, and TypePlace[3] = TypePlace[2] = B, We
fill in the rest of the table using type algebra, defined by the matrix:

A B C

A A A A

B A B C

C C C C

In five steps, we compute the types of concatenations of blocks of length powers of 2. We compute
the types of 16 blocks of size 2, then 8 blocks of size 4, then 4 blocks of size 8, then 2 blocks of
size 16, and finally one block of size 32.

1



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 01

0 1 1 1 0 1 0 0 0 1 1 1 11 0 0 0 0 01 1 1 1 1 1 10 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 00 01

0x
y 1

0

A A AB B B B B B B B B CC C
A A AA C C C C CCB B B BA

A A A A
A A A

A

CC C

A
A

A
A

A
A

A AB B B B B B B B BCCC C C
save

Since c0 = 0, we have ci =

{

0 if TypeBlock[i+ 1, 0] ∈ {A,B}
1 if TypeBlock[i+ 1, 0] = C

We compute all TypeBlock[i-1,0], by concatenating logarithmically
many blocks of size a power of 2. For example, Block[20, 0] =
Block[20, 20] Block[19, 16] Block[15, 0]. Using the values of
TypeBlock[i-1, 0] (not shown in the figure) for all i, we com-
pute all ci. For example, Type[20, 0] = CCA = C, thus c21 =
1. Each ci is shown in the figure to the left of Block[i−1, 0].
Finally, we write the carry bits into the first row of the
table below, then copy the save bits into the second
row, and use addition modulo 2 to compute
the bits of x + y, which are in the third row.

C
C
CB

C
C
CA

C

CAA
A
AC

C A
ACB
AA

B A A
AA

A A A
A
AB

B A
B AC

AC
C A
C A
C A

C
C
CB

AA
A
A
A
A
A
A
A

A
A
A
A
A
A
A

C
C

B
C

B C
C

C C
C
C

C
CA

1

1

1

1

1

0

0

0

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

0

1

1

1

1

0

1

1

A0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 01

1 1 1 0 00 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 01 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 00100110001111

0carries

0

save
x+y

2


