NC Addition

We assume that we have two length n binary numerals, (z) and (y). We can compute the binary
numeral (x + y) in O(logn) time using O(n) processors; the computation is thus in the class NC.

In our example, n = 32. The numerals (z) and (y) are shown in the first to rows of the matrix
below; the leftmost bit is the 315 bit, while the rightmost bit is the 0" bit. The third row shows
the save bits, the sequence of bits s31,...sg obtained by adding bits of x and y modulo 2.

Our goal is to compute the 33 bit numeral (z + y). Let ¢; be the carry bit from the (i —1)5" place
to the i*" place. Since there is no carry bit to the 0" place, we have cg = 0. The i'" bit of (z + %)
is s; + ¢;%2.

The most difficult part of this problem is computing the carry bits 32, c31,...c1 in logarithmic
time. You might guess that that is impossible, since a change in the 0" place could effect all
carry bits. Our trick is to consider both possibilities at each place simultaneously.

Places and Blocks

We define Place[i] to be consist of the 1'" bits of x and y. In our example, Place[0] = [1],
Place[l] = [(1)], etc. For i > j, let Block]i, j| = Place[i|Place[i — 1] - - - Place[j].

Each block defines a function F'[z, j] from {0,1} to {0,1} Block[i, j] defines a function from ¢; to
ci+1- TypeBlock[i, j] € {A, B, C} as follows

Aif Ci+1 = 0
Type Blockli, j] = ¢ B if ¢i11 = ¢
Cif Ci+1 = 1

We first write the type of each place in the third row of the table using the rules:

Type[y] = A
Type[y] = Type[p] =B
Type[ﬂ =C

For example, Type Place[5] = A, Type Place[4] = C, and Type Place[3] = Type Place[2] = B, We
fill in the rest of the table using type algebra, defined by the matrix:

[Al[B[C]
A[ATAA
B[A|B|C
clclclc

In five steps, we compute the types of concatenations of blocks of length powers of 2. We compute
the types of 16 blocks of size 2, then 8 blocks of size 4, then 4 blocks of size 8, then 2 blocks of
size 16, and finally one block of size 32.

save

W~ | = |
>lo|o|o
Ol |~ |+
Ole |~ |~
W~ | o=
W~ | = |
Olec |~ |~
W~ | = |
>lo oo
W~ | = |
O~ | o=
Ol |~ |~
W= o=
Olec |~ |~
W~ | o=
W~ | = |
W~ o=
>lo|o|o
wwr-ar-ao
W~ | = |
>lo|o|o
W~ | = |
W~ | o=
Ole |~ |~
W= | o=
>lo|o|o
>lo|o|o
>O°"‘"‘
W~ | o=
W~ | = |
W~ | = |
Ole |~ |~

>
O
w
O
>
O
O
o
>
>
O
>
W
O

. 0 if TypeBlock|i + 1,0] € {A,B
Since co = 0, we have ¢; = { 1if TypeBlockh +1, 0} z{c }
We compute all Type Block[i-1,0], by concatenating logarithmically 1[C
many blocks of size a power of 2. For example, Block[20,0] = 1B[C
Block[20, 20] Block[19, 16] Block[15,0]. Using the values of !
Type Block[i-1, 0] (not shown in the figure) for all 7, we com-
pute all ¢;. For example, Type[20, 0] = CCA = C, thus ¢g; = oAl A
1. Each ¢; is shown in the figure to the left of Block[i—1, 0].
Finally, we write the carry bits into the first row of the
table below, then copy the save bits into the second 1
row, and use addition modulo 2 to compute 0
the bits of x + y, which are in the third row.

[elielielle]

> > > > > > > >

| @]
> > > >

o/A| C

O]
olo|olofr=

1B[C

1B[C

DI D> > >

> >\ > > > > > >

Ie)
ojojo|o

CarrieS|0 o(1({1f1f1{1{0({0O)21)21|1)1|1|0|0OfOfO(2{0|0O|2|2|2|O|O(O(2|2|2({1f1
save i(o0f0(0(1|1{0[{21|0O|2|21|0O|21|O|21f{2f{2{0|21|2|0O|2|2|O0O|21(O0O(O0O(O0O(2[2[1[O0
X+y| of1{1{1{1{0/0|0|1|21|0|Of2f{O0({Of{21|2|2|21|1|1|2|0(0|0(2{0(21[{1[{0|0|0]|O

