\mathcal{NC} Addition

We assume that we have two length n binary numerals, $\langle x \rangle$ and $\langle y \rangle$. We can compute the binary numeral $\langle x + y \rangle$ in $O(\log n)$ time using O(n) processors; the computation is thus in the class \mathcal{NC} .

In our example, n = 32. The numerals $\langle x \rangle$ and $\langle y \rangle$ are shown in the first to rows of the matrix below; the leftmost bit is the 31^{st} bit, while the rightmost bit is the 0^{th} bit. The third row shows the **save** bits, the sequence of bits $s_{31}, \ldots s_0$ obtained by adding bits of x and y modulo 2.

Our goal is to compute the 33 bit numeral $\langle x + y \rangle$. Let c_i be the carry bit from the $(i-1)^{\text{st}}$ place to the i^{th} place. Since there is no carry bit to the 0^{th} place, we have $c_0 = 0$. The i^{th} bit of $\langle x + y \rangle$ is $s_i + c_i \% 2$.

The most difficult part of this problem is computing the carry bits $c_{32}, c_{31}, \ldots c_1$ in logarithmic time. You might guess that that is impossible, since a change in the 0th place could effect all carry bits. Our trick is to consider both possibilities at each place simultaneously.

Places and Blocks

We define Place[i] to be consist of the 1th bits of x and y. In our example, Place[0] = $\begin{bmatrix} 1\\1 \end{bmatrix}$, Place[1] = $\begin{bmatrix} 0\\1 \end{bmatrix}$, etc. For $i \ge j$, let Block[i, j] = Place[i]Place[i - 1] \cdots Place[j].

Each block defines a function F[i, j] from $\{0, 1\}$ to $\{0, 1\}$ Block[i, j] defines a function from c_j to c_{i+1} . TypeBlock $[i, j] \in \{A, B, C\}$ as follows

$$\text{Type Block}[i, j] = \begin{cases} \text{A if } c_{i+1} = 0\\ \text{B if } c_{i+1} = c_j\\ \text{C if } c_{i+1} = 1 \end{cases}$$

We first write the type of each place in the third row of the table using the rules:

$$Type\begin{bmatrix} 0\\0 \end{bmatrix} = A$$
$$Type\begin{bmatrix} 0\\1 \end{bmatrix} = Type\begin{bmatrix} 1\\0 \end{bmatrix} = B$$
$$Type\begin{bmatrix} 1\\1 \end{bmatrix} = C$$

For example, Type Place[5] = A, Type Place[4] = C, and Type Place[3] = Type Place[2] = B, We fill in the rest of the table using *type algebra*, defined by the matrix:

	A	В	С
А	Α	А	А
В	Α	В	С
С	С	С	С

In five steps, we compute the types of concatenations of blocks of length powers of 2. We compute the types of 16 blocks of size 2, then 8 blocks of size 4, then 4 blocks of size 8, then 2 blocks of size 16, and finally one block of size 32.

Х	0	0	1	1	1	0	1	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	1	1	1	0	0	1	1	0	0	1
У	1	0	1	1	0	1	1	1	0	1	0	1	0	1	0	1	0	0	1	1	0	1	0	1	0	0	0	1	0	1	1	1
save	1	0	0	0	1	1	0	1	0	1	1	0	1	0	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	1	1	0
	В	A	C	C	В	В	С	В	A	В	В	С	B	С	В	В	В	A	В	В	A	В	В	C	В	A	A	C	В	В	В	C
	I	A C B C							A C			7	C			В		ł	B		Α		C		A		A		B		C	
		A C A C												А					A	ł			A	1		Ċ						
		A A														A A																
		A													A																	
																P	Ι															

C C

C

С

A

0 A A

Ċ

1 B C

А

А

А

А

А

A

А

A

А

А

А

A A

Α

A

A

A

A

A

A

0 A C

0 B

0 B

1 C B

Ċ

С

С

С

Α

Α

А

А

А

А

А

А

А

0 B

1 C

1 B C

Ċ

С

С

С

A A

A

A

A

A

A

A

Since $c_0 = 0$, we have $c_i = \begin{cases} 0 \text{ if TypeBlock}[i+1,0] \in \{A,B\} \\ 1 \text{ if TypeBlock}[i+1,0] = C \end{cases}$

We compute all Type Block[i-1,0], by concatenating logarithmically many blocks of size a power of 2. For example, Block[20, 0] = Block[20, 20] Block[19, 16] Block[15, 0]. Using the values of Type Block[i-1, 0] (not shown in the figure) for all *i*, we compute all c_i . For example, Type[20, 0] = CCA = C, thus $c_{21} =$ 1. Each c_i is shown in the figure to the left of Block[i-1, 0]. Finally, we write the carry bits into the first row of the table below, then copy the save bits into the second row, and use addition modulo 2 to compute the bits of x + y, which are in the third row.

carries	0	0	1	1	1	1	1	0	0	1	1	1	1	1	0	0	0	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1	
save		1	0	0	0	1	1	0	1	0	1	1	0	1	0	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	1	1	0
x+y	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	0	0	0	1	0	1	1	0	0	0	0