
Addition is NC

We consider addittion of two n-bit binary numerals, a. and b. The digits of these numerals are ai

and bi for 0 ≤ i < n. The sum we are trying to compute is s, whose digits are {si} for 0 ≤ i ≤ n.
We let ci be the ith carry bit during the addition, for 0 ≤ i ≤ n. We note that si = (ai + bi + ci)
mod 2, where ci is the ith carry bit. The values of ci and si can be computed by the traditional
ripple method, as in the following program.

c0 = 0
for(i = 0 to n− 1)
{
si = (ai + bi + ci) mod 2
if(ai + bi == 0) ci+1 = 0
else if(ai + bi == 1) ci+1 = ci
else if(ai + bi == 2) ci+1 = 1

}
sn = cn

To have an NC algorithm, we must be able to compute all carry bits in O(logk n) steps using
O(nk) processors, for some constant k. For this problem, we can choose k = 1.

Changing a Sequential Algorithm to NC

Consider the following straight line program.
u = 1
v = u

x = v

y = x

z = y

We can see that the value of each of the variables is 1, but that computation takes five steps by
a sequential processor.

Our method is to store, at each variable, the actual valuue if we know it, otherwise instructions
for how to find the value. Five processors, working simultaneously, can execute the following four
steps resulting in a value of 1 for each variable.

Step 1:
value(u) = 1
value (v) = copy value(u)
value (x) = copy value(v)
value (y) = copy value(x)
value (z) = copy value(y)

Step 2:
value(v) = 1
value(x) = copy value(u)
value(y) = copy value(u)
value(z) = copy value(x)

Step 3:
value(x) = 1
value(y) = 1
value(z) = copy value(u)

Step 4:
value(z) = 1

Step 1 should be clear; the value of each variable except u is obtained by copying the value of
another variable. The processor that writes that instruction does not yet know what that copied
value will be.

1



Step 2 consists of four processors executing composition, just as in the document oddNC.pdf. The
value of v is now 1, because its instruction is to copy the value of u, which is previously known
to be 1. The actual value of x is not known, but by combining the first three lines of Step 1, we
know that it is a copy of the value of u. The processor does not know that u = 1, since it would
require two steps to fetch that value and write it to x, hence “copy value(u)” is written to x.
Similarly, “copy value(x)” is written to z.

In Step 3, the values of x and y are determined, but the value of z is not: the instruction “copy
value(u)” is stored in z. Step 4 finishes the algorithm.

Decreasing the number of steps from five to four does not seem like much, but more generally,
if we have a chain of assignments with n variables, we can evaluate all of them in O(log n) steps
instead of n by using n processors.

The NC Algorithm A for Addition

During the first step of A, we compute a statement for each carry bit. Each statement will be one
of the following three: value(ci+1) = 0, value (ci+1) = 1, or value (ci+1) = copy value ci, depending
on the value of ai+bi. We indicate the steps of A with the following pseudocode. For convenience,
we assume n = 2m We use the notation rhs[i] to denote the right hand side of the assignment of
value(ci), which is either 0, 1, or “copy value(cj)” for some j < i.

for all 0 ≤ i ≤ n in parallel Step (1)
if(ai + bi == 0)

rhs[i+ 1] = 0
else if(ai + bi == 2)

rhs[i+ 1] = 1
else

rhs[i+ 1] = “copy value(ci)”
for (int ℓ = 0; ℓ ≤ m; ℓ++) // sequentially

for all (i = positive even multiple of 2ℓ not more than n) in parallel (Step ℓ+ 1)
if (rhs[i] = “copy value(cj)”) // j = i− 2ℓ

rhs[i] = rhs[j]
for (int ℓ = m–1; ℓ ≥ 0; ℓ– –) // sequentially

for all (i = positive odd multiple of 2ℓ less than n) in parallel (Step 2m− ℓ+ 1)
if (rhs[i] = “copy value(cj)”) // j = i− 2ℓ

rhs[i] = rhs[j]
for (int i = 0;i ≤ n;n++)

si = (ai + bi + ci) mod 2

The number of steps is 2m+ 2 = O(logn), and the number of processors needed does not exceed
n+ 1 at any step. Thus, A is an NC algorithm.

2



Example

We now work through an example instance of the addition problem, where n = 32

15 8 7 6 5 4 3 2916 14 13 12 11 10171819202122232425262728293031

0 01 1 1 10 0 0 1 110 0 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 10

1 0

0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0

0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 2 0 0 0 1 2 2 2

00111110000001111111111111111111

000000000000000000000011 1111111 1

00101101010110 1 0

a

a+b
b

c
s

32

0

0

0

c0 = 0
c1 = c0
c2 = 1
c3 = c2
c4 = 1
c5 = 1
c6 = c5
c7 = 0
c8 = c7
c9 = 0
c10 = 0
c11 = c10
c12 = c11
c13 = 1
c14 = 1
c15 = c14
c16 = c15
c17 = c16
c18 = c17
c19 = c18
c20 = c19
c21 = c20
c22 = c21
c23 = c22
c24 = c23
c25 = c24
c26 = c25
c27 = c26
c28 = c27
c29 = c28
c30 = c29
c31 = 1
c32 = 0

(1)

c0 = 0
c2 = 1
c4 = 1
c6 = 1
c8 = 0
c10 = 0
c12 = c10
c14 = 1
c16 = c14
c18 = c16
c20 = c18
c22 = c20
c24 = c22
c26 = c24
c28 = c26
c30 = c28
c32 = 0

(2)

c0 = 0
c4 = 1
c8 = 0
c12 = 0
c16 = 1
c20 = c16
c24 = c20
c28 = c24
c32 = 0

(3)

c0 = 0
c8 = 0
c16 = 1
c24 = c16
c32 = 0

(4)

c0 = 0
c16 = 1
c32 = 0

(5)

c0 = 0
c32 = 0

(6)

c16 = 1
(7)

c8 = 0
c24 = 1

(8)

c4 = 1
c12 = 0
c20 = 1
c28 = 1

(9)

c2 = 1
c6 = 1
c10 = 0
c14 = 1
c18 = 1
c22 = 1
c26 = 1
c30 = 1

(10)

c1 = 0
c3 = 1
c5 = 1
c7 = 0
c9 = 0
c11 = 0
c13 = 1
c15 = 1
c17 = 1
c19 = 1
c21 = 1
c23 = 1
c25 = 1
c27 = 1
c29 = 1
c31 = 1

In our tables, we delete the words
“value” and “copy value” to save space.
For each 0 ≤ t ≤ 2m + 1 = 11, we
show the output of Step t. In column
(1), we show the output for ci for each
i. In column (2), we show entries for
even i. Despite the fact that our pseu-
docode for A does not recalculate final
(i.e., constant) values, we show those
previously calculated values in each col-
umn for uniformity of appearance.
In columns (3) through (6), we show the
output for even multiples of 2ℓ for ℓ =
1, 2, 3, 4. In columns (7) through (11),
we show the output for odd multiples of
2ℓ for ℓ = 4, 3, 2, 1, 0.

3


