Computer Science 456/656. Context-Sensitive Grammars

A context sensitive grammar, like all the grammars we have introduced in this course consists of the following parts:

- 1. Σ , the alphabet of *terminals*.
- 2. V, the alphabet of variables.
- 3. $S \in V$, the start symbol.
- 4. \mathcal{R} , a finite set of rules, or productions.

Terminals and variables together are called *grammar symbols*. What makes the grammar context-sensitive is the set of restictions on the productions. You might find different definitions in various places.

Each production has a left-hand side and a right-hand side. Each production is of the form:

 $\alpha A\beta \to \alpha \gamma \beta$

where A is a variable, α , β , and γ are strings of grammar symbols, and $\gamma \neq \varepsilon$, except as stated below.

A grammar with only productions of the form described above cannot generate the empty string, and thus not every context-free language would be a context-sensitive language. In order to prevent this, we allow one more production, namely $S \rightarrow \varepsilon$, but we make the additional restriction that S cannot appear on the right hand side of any production. With this slight "tweak" to the definition, every context-free language is context-sensitive.

Example

The language $\{a^n b^n c^n\}$ is generated by the following context-free grammar (modified from a Wikipedia page).