The Halting Problem is Undecidable

Deciding and Accepting

Definition 1 A deterministic machine \(M \) accepts a language \(L \) if for \(w \in L \), the computation of \(M \) with input \(w \) halts in an accepting state, and for \(w \notin L \), the computation of \(M \) with input \(w \) does not halt in an accepting state.

Definition 2 A deterministic machine \(M \) decides a language \(L \) if for \(w \in L \), the computation of \(M \) with input \(w \) halts in an accepting state, and for \(w \notin L \), the computation of \(M \) with input \(w \) halts in a rejecting state.

Definition 3 A non-deterministic machine \(M \) accepts a language \(L \) if for \(w \in L \), there is a computation of \(M \) with input \(w \) which halts in an accepting state, and for \(w \notin L \), there is no computation of \(M \) with input \(w \) which halts in an accepting state.

We will sometimes use the following slightly different, but equivalent, definition:

Definition 4 A non-deterministic machine \(M \) accepts a language \(L \) if for \(w \in L \), there is a computation of \(M \) with input \(w \) which halts, and for \(w \notin L \), there is no computation of \(M \) with input \(w \) which halts.

An accepting computation may require that \(M \) “guesses” correctly at each step.

We say that a language \(L \) is acceptable if there is some machine that accepts \(L \), and that \(L \) is decidable if there is some machine that decides \(L \). Clearly, any decidable language is acceptable.

Let \(T \) be an increasing function on integers. We assume \(T(n) \geq n \).

Definition 5 A deterministic machine \(M \) accepts a language \(L \) in time \(T \) if for \(w \in L \) the computation of \(M \) with input \(w \) halts in an accepting state within \(T(n) \) steps, where \(n = |w| \), and for \(w \notin L \), the computation of \(M \) with input \(w \) does not halt in an accepting state.

Definition 6 A deterministic machine \(M \) decides a language \(L \) in time \(T \) if if for \(w \in L \) the computation of \(M \) with input \(w \) halts in an accepting state within \(T(n) \) steps, where \(n = |w| \), and for \(w \notin L \), the computation of \(M \) with input \(w \) halts in a rejecting state within \(T(n) \) steps.

Theorem 1 If \(T(n) \) is a recursive function (that means computable) and for any \(n \), \(T(n) \) can be computed within \(O(T(n)) \) steps, and if a language \(L \) is accepted by some deterministic machine in time \(T \), Then \(L \) is decided by some deterministic machine in time \(O(T) \).

We define \(\mathcal{P} \text{-time} \) to be the class of all languages which are decided by some deterministic machine in \(\mathcal{P} \text{-time} \), that is in time \(T \) for some polynomially bounded function \(T \).

Definition 7 A non-deterministic machine \(M \) accepts a language \(L \) in time \(T \) if for \(w \in L \), there is a computation of \(M \) with input \(w \) which halts in an accepting state within \(T(|w|) \) steps, and for \(w \notin L \), there is no computation of \(M \) with input \(w \) which halts in an accepting state.

We define \(\mathcal{NP} \text{-time} \) to be the class of all languages which are accepted by some non-deterministic machine in \(\mathcal{P} \text{-time} \), that is in time \(T \) for some polynomial function \(T \).
The Halting Problem and the Diagonal Language

For consistency, we assume all machines are Turing machines. However, we could substitute any sufficiently powerful class of machines, such as all C++ programs.¹

If M is any machine, let $\langle M \rangle$ be its description, which is a string. We assume there is an emulator, a machine which emulates machines. Such an emulator is called a universal machine. If M is a machine and w is a string, and if the input of the emulator is $\langle M \rangle w$, the output of the emulator is the same as the output of M with input w.

We define the language HALT to be the set of all strings of the form $\langle M \rangle w$ such that M halts with input w. HALT is the language which is equivalent to the halting problem. The universal machine accepts HALT, and thus HALT is acceptable.

We define the diagonal language $\text{DIAG} = \{ \langle M \rangle : \langle M \rangle \notin \text{HALT} \}$, that is, the set of all descriptions of machines which do not accept their own descriptions.

Theorem 2 DIAG is not acceptable.

Proof: By contradiction. Assume that DIAG is acceptable. Let M_{DIAG} be a machine that accepts DIAG.

Claim 1: For any machine description $\langle M \rangle$, M halts with input $\langle M \rangle$ if and only if $\langle M \rangle \notin \text{DIAG}$.

Claim 2: For any machine description $\langle M \rangle$, M_{DIAG} halts with input $\langle M \rangle$ if and only if $\langle M \rangle \in \text{DIAG}$.

The first claim follows from the definition of DIAG, while the second follows from the definition of M_{DIAG}. We now replace M by M_{DIAG} in each claim. We obtain

Claim 3: M_{DIAG} halts with input $\langle M_{\text{DIAG}} \rangle$ if and only if $\langle M_{\text{DIAG}} \rangle \notin \text{DIAG}$.

Claim 4: M_{DIAG} halts with input $\langle M_{\text{DIAG}} \rangle$ if and only if $\langle M_{\text{DIAG}} \rangle \in \text{DIAG}$.

Claim 3 follows from Claim 1 by universal instantiation, while Claim 4 follows from Claim 2 by universal instantiation. These two claims contradict each other. We conclude that no machine accepts DIAG.²

Theorem 3 HALT is not decidable.

Proof: By contradiction. Suppose HALT is decidable. Then, for any machine description $\langle M \rangle$, we can decide whether M halts with input $\langle M \rangle$, which implies that DIAG is decidable, hence acceptable, contradicting Theorem 2.