
Reduction of IND to Subset Sum

We define an instance of IND, the independent set problem, to be a string of the form 〈G〉〈k〉
where G is a graph and k a positive integer. That string is a member of the language IND if there
is some set I vertices of G such that |I| = k and no two members of I form an edge of G.

We define an instance of Subset Sum, the subset sum problem to consist of a number C, and a
list of positive numbers X = x1, . . . xp. The ordered pair (C,X) is a member of the language
Subset Sum if there is some set of numbers S in the range {1, . . . p} such that

∑

{xi : i ∈ S} = C.

We first prove that Subset Sum is NP, using the certificate method. If (C,X) ∈Subset Sum,
then the set S itself is a certificate, and verification program is straightforward: simply add the
weights.

We define a P-time reduction R of IND to Subset Sum, where IND is the independent set problem.

We assume that all of our languages (problems) are over Σ = {0, 1}, the binary alphabet. and
each reduction must be a function

R : Σ∗ → Σ∗

. When we define R(w) below, we will assume that w is an instance of the independent set
problem. If w is any other string, we define R(w) = ε, the empty string. No further discussion of
this case is necessary.

Let G = (V,E) be a graph, and k a number. Then 〈G〉〈k〉 is an instance of IND, the independent
set problem. We define R(〈G〉〈k〉), an instance of the subset sum problem, as follows.

Write V = {v1, . . . vn} and E = {e1, . . . em}, the vertices and edges of G, respectively. We say that
vi meets ei if vi is one of the two end points of ej.

We will have two classes of entries in our list X, those derived from vertices of G, and those
derived from edges of G. We call these Y = y1, . . . yn and z1 . . . zm. We will then let p = n +m,
and X = Y + Z, the concatenation of the two lists. More formally:

• For any 1 ≤ i ≤ n, let yi = 10m+1 +
∑

{

10j : vi meets ej
}

.

• For any 1 ≤ j ≤ m, let zj = 10j

• For any 1 ≤ ℓ ≤ n+m, we define xℓ =

{

yℓ if ℓ ≤ n
zn+ℓ otherwise

Then, let X = x1, . . . xn+m.

• Let C = k 10m+1 +
∑m

j=1
10j

By the following two lemmas, R is a reduction of IND to Subset Sum.

Two Lemmas?

Lemma 1 If G has an independent set of size k, then (C,X) ∈ Subset Sum.

Proof: Suppose I is a set consisting of k vertices of G. Let J be the set of edges which do not
meet any of the vertices in I. Define

• Y = {yi : vi ∈ I}

1



• Z = {zj : ej ∈ J }

• X = Y ∪ Z

We claim that
∑

X = C. We analyze the sum by examining “places,” just like we did in
elementary school.

We first examine places 1 through m, namely the coefficients of 10j for each j. If there is some
vertex vi that meets ej, yi contributes 1 to that place. Since I has at most one vertex which
meets ej, and since ej /∈ J , the coefficient of X in the jth place is 1, just as in C. On the other
hand, if there is no vertex that meets ej, then there is no yi which contributes to the jth place of
∑

X, but zj does contribute a 1 in that place. In either case,
∑

X and C agree in the jth place.

Finally, we note that, disregarding those first m places,
∑

X has k copies of 10m+1, as does C,
and we are done.

Trivially, R is a polynomial time function. Thus IND⊆PSubset Sum.

Theorem 1 If IND is NP–complete then Subset Sum is NP–complete.

Example

Let G be the graph illustrated below, where n = 6 and m = 8. Let k = 3. The set I = {v1, v3, v6}
is an independent set of vertices of G of size k. In our reduction, J = {e4, e7}. We write k and
all the weights in base 10. The first array shows the weights of all items, while the second array
shows that the weights of the selected items sum to k.

C = 3 1 1 1 1 1 1 1 1 0
y1 = 1 0 0 1 0 0 1 0 1 0
y2 = 1 0 0 0 0 1 0 1 1 0
y3 = 1 0 0 0 1 0 0 1 0 0
y4 = 1 0 1 0 1 1 1 0 0 0
y5 = 1 1 1 1 0 0 0 0 0 0
y6 = 1 1 0 0 0 0 0 0 0 0
z1 = 0 0 0 0 0 0 0 0 1 0
z2 = 0 0 0 0 0 0 0 1 0 0
z3 = 0 0 0 0 0 0 1 0 0 0
z4 = 0 0 0 0 0 1 0 0 0 0
z5 = 0 0 0 0 1 0 0 0 0 0
z6 = 0 0 0 1 0 0 0 0 0 0
z7 = 0 0 1 0 0 0 0 0 0 0
z8 = 0 1 0 0 0 0 0 0 0 0
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x1 = 1 0 0 1 0 0 1 0 1 0
x3 = 1 0 0 0 1 0 0 1 0 0
x6 = 1 1 0 0 0 0 0 0 0 0
y4 = 0 0 0 0 0 1 0 0 0 0
y7 = 0 0 1 0 0 0 0 0 0 0

C = 3 1 1 1 1 1 1 1 1 0
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