A Simple \mathcal{NC} Problem

There is a lower bound do the amount of time any machine takes to execute one step.\footnote{No physical object can be smaller than the Planck length, approximately 1.616×10^{-35} m, and no physical process can have duration less than Planck time, which is approximately 5.39×10^{-44} sec.} Thus, Moore’s Law, that computation speed increases exponentially, cannot hold forever. In fact, it’s “already dead,” according to some experts.

Eventually, to achieve higher speed, we must use parallel computation. \mathcal{NC} (Nick’s Class) is the the class of all languages which are accepted within polylogarithmic time using polynomially many parallel processors. That is, if $L \in \mathcal{NC}$, there is a constant k such that L is accepted (equivalently, decided) in $O(\log^k n)$ time by $O(n^k)$ processors.

Odd Number of 1’s

We now describe a simple \mathcal{NC} language. Let $\Sigma = \{0, 1\}$, and let $L = \{w \in \Sigma^* : \#_1(w) \equiv 1 \pmod{2}\}$, that is, binary strings with an odd number of 1’s.

We give an \mathcal{NC} algorithm A which decides L in $O(\log n)$ time using $O(n \log n)$ processors, where n is the length of the input string w. If $x \in \Sigma^*$, define $F(x) = \#_1(x) \equiv 1 \pmod{2}$, which we interpret as a Boolean function, which is true if and only if x has an odd number of 1’s. The goal is to compute $F(w)$. There are $\Theta(n^2)$ substrings of w, but A computes F only for $O(n)$ selected substrings of w. A processor can read and write only finitely many bits at a step; at each step, each working processor reads $F(u)$ and $F(v)$ for adjacent substrings u and v, then computes and stores $F(uv) = (F(u) + F(v)) \equiv 1 \pmod{2}$.

A is simpler to explain if the length of the input string is always a power of 2. We can insist on that by padding with 0’s: for example if the input string is 011010 0010 we let $w = 0110100010000000$. Let $n = |w| = 2^m$. Let S be the set of consisting of all subintervals obtained by breaking w into 2^i pieces each of length 2^{m-i}, for all $0 \leq i \leq m$. Thus S consists of all subintervals of length 1, $n/2$ subintervals of length 2, $n/4$ subintervals of length 4, and so forth; these will include 2^m subintervals of length $n/2$ and one of length n, namely w itself. The cardinality of S is $2^{-m} - 1$.

Each member of S of length 2^i, for $i > 0$, except for the strings of length 1, is the concatenation of two members of S of length 2^{i-1}. We let $u_{i,j}$ be the j^{th} member of S of length $2^m a_{lyi}$; for any $0 \leq i \leq m$ and $1 \leq j \leq 2^{m-n}$. That is $u_{i,j}$ is the substring of w of length 2^i ending at the $(j \cdot 2^i)$th place of w. For example, if $w = 1001$,

\[
\begin{align*}
 u_{0,1} &= 1 \\
 u_{0,2} &= 0 \\
 u_{0,3} &= 0 \\
 u_{0,4} &= 1 \\
 u_{1,1} &= 10 \\
 u_{1,2} &= 01 \\
 u_{2,1} &= 1001
\end{align*}
\]

Note that $u_{0,j} = w_j$, the j^{th} symbol of w, while $u_{i,j} = u_{i-1,2j-1} u_{i-1,2j}$ if $i > 0$.\footnotetext{No physical object can be smaller than the Planck length, approximately 1.616×10^{-35} m, and no physical process can have duration less than Planck time, which is approximately 5.39×10^{-44} sec.}
Algorithm \mathcal{A}
for ($1 \leq j \leq n$) in parallel
\[F(u_{0,j}) = w_j; \]
for (int $i = 1$; $i \leq m$; $i++$) // sequential
\[F(u_{i,j}) = (F(u_{i-1,2j-1} + F(u_{i-1,2j}))(\mod 2); \]
return $F(u_{m,1});$

The first line is the string w, which has length $n = 32$.
The next line shows the values of $F(u_{0,j})$ for $1 \leq j \leq 32$.
The next line shows the values of $F(u_{1,j})$ for $1 \leq j \leq 16$.
The next line shows the values of $F(u_{2,j})$ for $1 \leq j \leq 8$.
The next line shows the values of $F(u_{3,j})$ for $1 \leq j \leq 4$.
The next line shows the values of $F(u_{4,j})$ for $1 \leq j \leq 2$.
The last line shows $F(u_{5,1}) = 1$, and thus $w \in L$.

\mathcal{A} takes 6 steps and uses 32 processors for this example.