A Simple \mathcal{NC} Problem

There is a lower bound do the amount of time any machine takes to execute one step.¹ Thus, Moore's Law, that computation speed increases expondentially, cannot hold forever. In fact, it's "already dead," according to some experts.

Eventually, to achieve higher speed, we must use parallel computation. \mathcal{NC} (Nick's Class) is the the class of all languages which are accepted within polylogarithmic time using polynomially many parallel processors. That is, if $L \in \mathcal{NC}$, there is a constant k such that L is accepted (equivalently, decided) in $O(\log^k n)$ time by $O(n^k)$ processors.

Odd Number of 1's

We now describe a simple \mathcal{NC} language. Let $\Sigma = \{0, 1\}$, and let $L = \{w \in \Sigma^* : \#_1(w) \% 2 = 1\}$, that is, binary strings with an odd number of 1's.

We give an \mathcal{NC} algorithm \mathcal{A} which decides L in $O(\log n)$ time using $O(n \log n)$ processors, where n is the length of the input string w. If $x \in \Sigma^*$, define $F(x) = \#_1(x)\%_2$, which we interpret as a Boolean function, which is true if and only if x has an odd number of 1's. The goal is to compute F(w). There are $\Theta(n^2)$ substrings of w, but \mathcal{A} computes F only for O(n) selected substrings of w. A processor can read and write only finitely many bits at a step; at each step, each working processor reads F(u) and F(v) for adjacent substrings u and v, then computes and stores F(uv) = (F(u) + (v))%2.

 \mathcal{A} is simpler to explain if the length of the input string is always a power of 2. We can insist on that by padding with 0's: for example if the input string is 0110100010 we let w = 01101000100000000.

Let $n = |w| = 2^m$. Let \mathfrak{S} be the set of consisting of all subintervals obtained by breaking w into 2^i pieces each of length 2^{m-i} , for all $0 \leq i \leq m$. Thus \mathfrak{S} consists of all subintervals of length 1, n/2 subintervals of length 2, n/4 subintervals of length 4, and so forth; these will include 2 subintervals of length n/2 and one of length n, namely w itself. The cardinality of \mathfrak{S} is 2n - 1. Each member of \mathfrak{S} of length 2^i , for i > 0, except for the strings of length 1, is the concatenation of two members of \mathfrak{S} of length 2^{i-1} . We let $u_{i,j}$ be the j^{th} member of \mathfrak{S} of length $2^m a lyi$; for any $0 \leq i \leq m$ and $1 \leq j \leq 2^{m-i}$. That is $u_{i,j}$ is the substring of w of length 2^i ending at the $(j \cdot 2^i)^{\text{th}}$ place of w. For example, if w = 1001,

$u_{0,1} =$	= 1				
$u_{0,2} =$	= 0				
$u_{0,3} =$	= 0				
$u_{0,4} =$: 1				
$u_{1,1} =$	= 10				
$u_{1,2} =$	= 01				
$u_{2,1} =$	= 1001				
.1 .	.1	∙th	1 1 C	1 .1	$\cdot c \cdot > c$

Note that $u_{0,j} = w_j$, the jth symbol of w, while $u_{i,j} = u_{i-1,2j-1}u_{i-1,2j}$ if i > 0.

¹No physical object can be smaller than the Planck length, approximately 1.616×19^{-35} m, and no physical process can have duration less than Planck time, which is approximately 5.39×10^{-44} sec.

Algorithm \mathcal{A} for $(1 \leq j \leq n)$ in parallel $F(u_{0,j}) = w_j;$ for $(\text{int } i = 1; i \leq m; i++) //$ sequential for $(1 \leq j \leq n/2^i)$ in parallel $F(u_{i,j}) = (F(u_{i-1,2j-1} + F(u_{i-1,2j})\%2;$ return $F(u_{m,1});$

0	0	1	1	0	1	1	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	0	0	1	0	0	1	1	1	1	0
0	0	1	1	0	1	1	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	0	0	1	0	0	1	1	1	1	0
()	0 1 1 0		(0	1		0		0		()	1	1 ()	1		1		0		1							
	0 0 0 1									()		1			0				1											
0 1											1 1																				
1										0																					
1																															

The first line is the string w, which has length n = 32. The next line shows the values of $F(u_{0,j})$ for $1 \le j \le 32$. The next line shows the values of $F(u_{1,j})$ for $1 \le j \le 16$. The next line shows the values of $F(u_{2,j})$ for $1 \le j \le 8$. The next line shows the values of $F(u_{3,j})$ for $1 \le j \le 4$. The next line shows the values of $F(u_{4,j})$ for $1 \le j \le 2$. The last line shows $F(u_{5,1}) = 1$, and thus $w \in L$.

 $\mathcal A$ takes 6 steps and uses 32 processors for this example.