
A Simple NC Problem

There is a lower bound do the amount of time any machine takes to execute one step.1 Thus,
Moore’s Law, that computation speed increases expondentially, cannot hold forever. In fact, it’s
“already dead,” according to some experts.

Eventually, to achieve higher speed, we must use parallel computation. NC (Nick’s Class) is the
the class of all languages which are accepted within polylogarithmic time using polynomially many
parallel processors. That is, if L ∈ NC, there is a constant k such that L is accepted (equivalently,
decided) in O(logk n) time by O(nk) processors.

Odd Number of 1’s

We now describe a simple NC language. Let Σ = {0, 1}, and let L = {w ∈ Σ∗ : #1(w)%2 = 1},
that is, binary strings with an odd number of 1’s.

We give an NC algorithm A which decides L in O(logn) time using O(n logn) processors, where
n is the length of the input string w. If x ∈ Σ∗, define F (x) = #1(x)%2, which we interpret
as a Boolean function, which is true if and only if x has an odd number of 1’s. The goal is
to compute F (w). There are Θ(n2) substrings of w, but A computes F only for O(n) selected
substrings of w. A processor can read and write only finitely many bits at a step; at each step,
each working processor reads F (u) and F (v) for adjacent substrings u and v, then computes and
stores F (uv) = (F (u) + (v))%2.

A is simpler to explain if the length of the input string is always a power of 2. We can insist on that
by padding with 0’s: for example if the input string is 0110100010 we let w = 0110100010000000.

Let n = |w| = 2m. Let S be the set of consisting of all subintervals obtained by breaking w into
2i pieces each of length 2m−i, for all 0 ≤ i ≤ m. Thus S consists of all subintervals of length
1, n/2 subintervals of length 2, n/4 subintervals of length 4, and so forth; these will include 2
subintervals of length n/2 and one of length n, namely w itself. The cardinality of S is 2n − 1.
Each member of S of length 2i, for i > 0, except for the strings of length 1, is the concatenation
of two members of S of length 2i−1. We let ui,j be the jth member of S of length 2malyi; for any
0 ≤ i ≤ m and 1 ≤ j ≤ 2m−i. That is ui,j is the substring of w of length 2i ending at the (j · 2i)th

place of w. For example, if w = 1001,
u0,1 = 1
u0,2 = 0
u0,3 = 0
u0,4 = 1
u1,1 = 10
u1,2 = 01
u2,1 = 1001

Note that u0,j = wj, the jth symbol of w, while ui,j = ui−1,2j−1ui−1,2j if i > 0.

1No physical object can be smaller than the Planck length, approximately 1.616 × 19−35m, and no physical

process can have duration less than Planck time, which is approximately 5.39× 10−44 sec.

1

Algorithm A
for(1 ≤ j ≤ n) in parallel

F (u0,j) = wj;
for(int i = 1; i ≤ m; i++) // sequential

for(1 ≤ j ≤ n/2i) in parallel
F (ui,j) = (F (ui−1,2j−1 + F (ui−1,2j)%2;

return F (um,1);

0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1

0 0 0 0 0 0 0 0 01 1 1 1 1 1

0 0 0 0 0

0

1 1

1 1

1

0

1

1

0

1

1

0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0

The first line is the string w, which has length n = 32.
The next line shows the values of F (u0,j) for 1 ≤ j ≤ 32.
The next line shows the values of F (u1,j) for 1 ≤ j ≤ 16.
The next line shows the values of F (u2,j) for 1 ≤ j ≤ 8.
The next line shows the values of F (u3,j) for 1 ≤ j ≤ 4.
The next line shows the values of F (u4,j) for 1 ≤ j ≤ 2.
The last line shows F (u5,1) = 1, and thus w ∈ L.

A takes 6 steps and uses 32 processors for this example.

2

