A Simple $\mathcal{N C}$ Problem

There is a lower bound do the amount of time any machine takes to execute one step. ${ }^{1}$ Thus, Moore's Law, that computation speed increases expondentially, cannot hold forever. In fact, it's "already dead," according to some experts.
Eventually, to achieve higher speed, we must use parallel computation. $\mathcal{N C}$ (Nick's Class) is the the class of all languages which are accepted within polylogarithmic time using polynomially many parallel processors. That is, if $L \in \mathcal{N C}$, there is a constant k such that L is accepted (equivalently, decided) in $O\left(\log ^{k} n\right)$ time by $O\left(n^{k}\right)$ processors.

Odd Number of 1's

We now describe a simple $\mathcal{N C}$ language. Let $\Sigma=\{0,1\}$, and let $L=\left\{w \in \Sigma^{*}: \#_{1}(w) \% 2=1\right\}$, that is, binary strings with an odd number of 1's.
We give an $\mathcal{N C}$ algorithm \mathcal{A} which decides L in $O(\log n)$ time using $O(n \log n)$ processors, where n is the length of the input string w. If $x \in \Sigma^{*}$, define $F(x)=\#_{1}(x) \%$, which we interpret as a Boolean function, which is true if and only if x has an odd number of 1's. The goal is to compute $F(w)$. There are $\Theta\left(n^{2}\right)$ substrings of w, but \mathcal{A} computes F only for $O(n)$ selected substrings of w. A processor can read and write only finitely many bits at a step; at each step, each working processor reads $F(u)$ and $F(v)$ for adjacent substrings u and v, then computes and stores $F(u v)=(F(u)+(v)) \% 2$.
\mathcal{A} is simpler to explain if the length of the input string is always a power of 2 . We can insist on that by padding with 0 's: for example if the input string is 0110100010 we let $w=0110100010000000$.
Let $n=|w|=2^{m}$. Let \mathfrak{S} be the set of consisting of all subintervals obtained by breaking w into 2^{i} pieces each of length 2^{m-i}, for all $0 \leq i \leq m$. Thus \mathfrak{S} consists of all subintervals of length $1, n / 2$ subintervals of length $2, n / 4$ subintervals of length 4 , and so forth; these will include 2 subintervals of length $n / 2$ and one of length n, namely w itself. The cardinality of \mathfrak{S} is $2 n-1$. Each member of \mathfrak{S} of length 2^{i}, for $i>0$, except for the strings of length 1 , is the concatenation of two members of \mathfrak{S} of length 2^{i-1}. We let $u_{i, j}$ be the $j^{\text {th }}$ member of \mathfrak{S} of length 2^{m} alyi ; for any $0 \leq i \leq m$ and $1 \leq j \leq 2^{m-i}$. That is $u_{i, j}$ is the substring of w of length 2^{i} ending at the $\left(j \cdot 2^{i}\right)^{\text {th }}$ place of w. For example, if $w=1001$,

$$
\begin{aligned}
& u_{0,1}=1 \\
& u_{0,2}=0 \\
& u_{0,3}=0 \\
& u_{0,4}=1 \\
& u_{1,1}=10 \\
& u_{1,2}=01 \\
& u_{2,1}=1001
\end{aligned}
$$

Note that $u_{0, j}=w_{j}$, the $j^{\text {th }}$ symbol of w, while $u_{i, j}=u_{i-1,2 j-1} u_{i-1,2 j}$ if $i>0$.

[^0]Algorithm \mathcal{A}
for $(1 \leq j \leq n)$ in parallel
$F\left(u_{0, j}\right)=w_{j} ;$
for $($ int $\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{m} ; \mathrm{i}++) / /$ sequential
for $\left(1 \leq j \leq n / 2^{i}\right)$ in parallel
$F\left(u_{i, j}\right)=\left(F\left(u_{i-1,2 j-1}+F\left(u_{i-1,2 j}\right) \% 2 ;\right.\right.$
return $F\left(u_{m, 1}\right)$;

0	0	1			0	1	1	0	0	0	1	1	0	1	0				0	1	1	0	1	0			0	1	1	1	1		0
0	0	1			0	1	1	0	0	0	1	1	0	1	0				0	1	1	0	1	0			0	1	1	1	1		0
	0		0		1			1		0		0		1		0		0							1					0		1	
0				0					0				1				0					1			0				1				
0									1								1								1								
1																	0																
1																																	

The first line is the string w, which has length $n=32$.
The next line shows the values of $F\left(u_{0, j}\right)$ for $1 \leq j \leq 32$.
The next line shows the values of $F\left(u_{1, j}\right)$ for $1 \leq j \leq 16$.
The next line shows the values of $F\left(u_{2, j}\right)$ for $1 \leq j \leq 8$.
The next line shows the values of $F\left(u_{3, j}\right)$ for $1 \leq j \leq 4$.
The next line shows the values of $F\left(u_{4, j}\right)$ for $1 \leq j \leq 2$.
The last line shows $F\left(u_{5,1}\right)=1$, and thus $w \in L$.
\mathcal{A} takes 6 steps and uses 32 processors for this example.

[^0]: ${ }^{1}$ No physical object can be smaller than the Planck length, approximately $1.616 \times 19^{-35} \mathrm{~m}$, and no physical process can have duration less than Planck time, which is approximately $5.39 \times 10^{-44} \mathrm{sec}$.

