Regular Languages are \mathcal{NC}

Let L be a regular language, and let M be a DFA which accepts (actually, decides) L. Using M, we design an \mathcal{NC} algorithm which decides L in $O(\log n)$ time using $O(n)$ processors, where n is the length of the input string w.

$M = (Q, \Sigma, \delta, q_0, F)$. Recall Q is the set of states of M, Σ is the input alphabet, $\delta : Q \times \Sigma \to Q$ is the transition function, $q_0 \in Q$ is the start state, and $F \subseteq Q$ is the set of final states. We extend the transition function to $\delta^* : Q \times \Sigma^* \to Q$ inductively: $\delta^*(q, \lambda) = q$, and $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$ for any $a \in \Sigma$, $q \in Q$. If $w \in \Sigma^*$, then $w \in L$, i.e., is accepted by M, if $\delta^*(q_0, w) \in F$. Equivalently, we describe the transition function of M by a function $\delta^*(\ , x) : Q \to Q$, for any $x \in \Sigma^*$; where $\delta^*(\ , x)(q) = \delta^*(q, x)$ for all $q \in Q$.

We now describe an \mathcal{NC} algorithm A, which decides whether a given string is a member of L. To simplify our construction, we assume that the length of the input string is a power of 2, although it is a simple matter to generalize to arbitrary n: augment Σ with a special “do nothing” symbol •, which we call a blank. Define $\delta(q, •) = q$ for any $q \in Q$. Let w^* be the string obtained by padding the input string w with just enough blanks to bring its length to a power of 2. For example, if $w = aabcababbcab$ we let $w^* = aabcababbcabca\cdots$. Let $n = 2^m = |w^*|$. Let \mathcal{G} be the set of consisting of all subintervals obtained by breaking w^* into 2^i pieces each of length 2^{m-i}, for all $0 \leq i \leq m$. Thus \mathcal{G} consists of all subintervals of length 1, $n/2$ subintervals of length 2, $n/4$ subintervals of length 4, and so forth; these will include 2 subintervals of length $n/2$ and one of length n, namely w itself. The cardinality of \mathcal{G} is $2n - 1$. Each member of \mathcal{G} of length 2^i, for $i > 0$, is the concatenation of two members of \mathcal{G} of length 2^{i-1}. We let $u_{i,j}$ be the j^{th} member of \mathcal{G} of length 2^i, for $0 \leq i \leq m$ and $1 \leq j \leq 2^{m-i}$. That is, $u_{i,j}$ is the substring of w^* of length 2^i ending at the $(2^i j)^{th}$ place of w^*. A has $1 + m$ phases, which we number 0, 1, . . . , m. Phase i of A computes $\delta^*(\ , u_{i,j})$ for all $1 \leq j \leq 2^i$, takes $O(1)$ time and uses 2^{m-i} processors. The functions $\delta^*(\ , u_{i,j})$ for all j can simply be read off the state diagram of M. For $i > 0$, $\delta^*(\ , u_{i,j})$ is simply the composition of the functions $\delta^*(\ , u_{i-1,2j-1})$ and $\delta^*(\ , u_{i-1,2j})$, for all $1 \leq j \leq 2^{m-i}$. For example, in Phase 1 of the example computation below, $\delta^*(\ , bc)$ is the composition of $\delta^*(\ , b)$ with $\delta^*(\ , c)$.
Example

Let \(M \) be given by the state diagram below. For simplicitly, we dispense with the clumsy “\(q_i \)” notation and write simply \(i \). Thus \(Q = \{0, 1, 2\} \), the start state is 0, and \(F = \{2\} \).

Let \(w = aabcabceca \). The sequential computation of \(M \) with input \(w \) takes 13 steps. Since \(2 \in F \), \(w \) is accepted.

\[
0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 1 \xrightarrow{c} 1 \xrightarrow{a} 2 \xrightarrow{c} 1 \xrightarrow{b} 0 \xrightarrow{a} 0 \xrightarrow{b} 1 \xrightarrow{c} 1 \xrightarrow{c} 1 \xrightarrow{c} 1 \xrightarrow{a} 2
\]

Padding with blanks to obtain a length of 16, a power of 2, we let \(w^* = aabcabceca \cdots \). Execute \(A \) in five phases using 16 processors.

Phase 0:

\[
\begin{array}{cccccccccccccc}
\text{a} & \text{a} & \text{b} & \text{c} & \text{a} & \text{c} & \text{b} & \text{a} & \text{b} & \text{c} & \text{a} & \text{c} & \text{a} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Phase 1:

\[
\begin{array}{cccccccccccccc}
\text{aa} & \text{bc} & \text{ac} & \text{ba} & \text{bc} & \text{cc} & \text{a} & \text{c} & \text{a} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Phase 2:

\[
\begin{array}{cccccccccccccc}
\text{aabc} & \text{acba} & \text{becc} & \text{a} & \text{c} & \text{a} \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 1 & 1 & 1
\end{array}
\]

Phase 3:

\[
\begin{array}{cccccccccccccc}
\text{aabcabca} & \text{becca} & \text{a} \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}
\]

Phase 4:

\[
\begin{array}{cccccccccccccc}
\text{aabcabceca} & \text{a} \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}
\]

The computation at Phase 4 tells us that \(\delta^*(0, aabcabceca \cdots) = 2 \), a final state. Thus \(aabcabceca \in L \).