
Regular Languages are in NC

Theorem 1 All regular languages are in NC.

Proof: Let L be a regular language over an alphabet Σ. We will prove that L ∈ NC.
We show how to determine whether w ∈ Σ∗ is a member of L in O(logn) steps using n
processors, where n = |w|. We use a divide and conquer method adapted to Nick’s Class.
Let M be a DFA which accepts L. Let Q = {q0, q1, . . . qk} be the set of states of M , q0 the
start state, δ : Q × Σ → Q the transition function, and F ⊆ Q the set of final states. If
a ∈ Σ, we write δ(a,) : Q → Q. In the usual manner, we also write δ(x,) : Q → Q for any
x ∈ Σ∗.

We identify a collection of O(n) subproblems, each of which can be solved in O(1) time
by one processor, given the solutions to two smaller subproblems. Each subproblem is
defined by a state qi ∈ Q and a string u ∈ Σ∗: the subproblem is to determine the value of
δ(qi, u) ∈ Q. We define the size of that subproblem to be the length of u.

The subproblems of size 0 and 1 are trivial. Our method is to solve a subproblem of
size m ≥ 2 by combining the solutions to two subproblems of approximately half the size.

Let x ∈ Σ∗ of length m ≥ 2. Write x = yz, where |y| = ⌊m/2⌋. For any qi ∈ Q, let
qj = δ(qi, y), and let qk = δ(qj, z). Then δ(qi, x) = qk. Finally, we note that w ∈ L if and
only if δ(q0, w) ∈ F .

Our recursion is O(logn) deep, and at each recursive step, we perform O(n) compu-
tations, each of which takes O(1) time by one processor. Thus, the time complexity of
our algorithm is O(logn) and the work complexity is O(n logn). This demonstrates that
L ∈ NC. ✷

1

