Regular Languages are in $\mathcal{N C}$

Theorem 1 All regular languages are in $\mathcal{N C}$.
Proof: Let L be a regular language over an alphabet Σ. We will prove that $L \in \mathcal{N C}$. We show how to determine whether $w \in \Sigma^{*}$ is a member of L in $O(\log n)$ steps using n processors, where $n=|w|$. We use a divide and conquer method adapted to Nick's Class. Let M be a DFA which accepts L. Let $Q=\left\{q_{0}, q_{1}, \ldots q_{k}\right\}$ be the set of states of M, q_{0} the start state, $\delta: Q \times \Sigma \rightarrow Q$ the transition function, and $F \subseteq Q$ the set of final states. If $a \in \Sigma$, we write $\delta(a):, Q \rightarrow Q$. In the usual manner, we also write $\delta(x):, Q \rightarrow Q$ for any $x \in \Sigma^{*}$.

We identify a collection of $O(n)$ subproblems, each of which can be solved in $O(1)$ time by one processor, given the solutions to two smaller subproblems. Each subproblem is defined by a state $q_{i} \in Q$ and a string $u \in \Sigma^{*}$: the subproblem is to determine the value of $\delta\left(q_{i}, u\right) \in Q$. We define the size of that subproblem to be the length of u.

The subproblems of size 0 and 1 are trivial. Our method is to solve a subproblem of size $m \geq 2$ by combining the solutions to two subproblems of approximately half the size.

Let $x \in \Sigma^{*}$ of length $m \geq 2$. Write $x=y z$, where $|y|=\lfloor m / 2\rfloor$. For any $q_{i} \in Q$, let $q_{j}=\delta\left(q_{i}, y\right)$, and let $q_{k}=\delta\left(q_{j}, z\right)$. Then $\delta\left(q_{i}, x\right)=q_{k}$. Finally, we note that $w \in L$ if and only if $\delta\left(q_{0}, w\right) \in F$.

Our recursion is $O(\log n)$ deep, and at each recursive step, we perform $O(n)$ computations, each of which takes $O(1)$ time by one processor. Thus, the time complexity of our algorithm is $O(\log n)$ and the work complexity is $O(n \log n)$. This demonstrates that $L \in \mathcal{N C}$.

