Computer Science 456/656 Spring 2009 Second Examination, March 26, 2009 The entire examination is 235 points. | | rue or False. [5 points each] $T = \text{true}$, $F = \text{false}$, and $O = \text{open}$, meaning that the answer is not known science at this time. | |-------|---| | (| a) Every subset of a regular language is regular. | | (| b) The complement of every \mathcal{NP} language is \mathcal{NP} . | | (| c) The complement of every recursive language is recursive. | | (| d) The complement of every recursively enumerable language is recursively enumerable. | | (| e) The set of all binary numerals for prime numbers is in \mathcal{P} . | | (| f) Every context-free language is accepted by some deterministic machine. | | (| g) The problem of whether two given context-free grammars generate the same language is decidable. | | (1 | h) Suppose a machine M accepts a language L_1 , and L_2 is a proper subset of L_1 . Then, M accepts L_2 . | | 2. Fi | ll the blanks. [5 points each blank] | | (| a) A machine M is if, given any configuration x of M , there is at most one configuration y such that $x \mapsto y$. | | (| b) A context-free grammar G is if there is some string in $L(G)$ which has more than one parse tree. | | (| c) If a language L_1 can be easily reduced to a language L_2 , then L_1 is at least as as L_2 . (Hint: the answer is either "hard" or "easy.") | | 3. [2 | 20 points] Give the definition of \mathcal{NP} -TIME. (Yes, it is possible to write it in this space.) | ## 4. [30 points] - 1. $S \to \epsilon$ - $2. S \rightarrow a_2 S_3 b_4 S_5$ | | a | b | eof | S | |---|---|---|------|---| | 0 | | | | 1 | | 1 | | | halt | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the "balanced parentheses" language, where a represents a left parenthesis, and b represents a right parenthesis. Example strings include ϵ , ab, aabb, abab, and aabbab. 5. [40 points] We can prove that the independent set problem is \mathcal{NP} -complete by reducing 3-CNF-Sat to it. This reduction is a function R, where, if E is a Boolean expression in 3-CNF form, then $R(E) = \langle G \rangle \langle k \rangle$, where G is a graph and k is a non-negative number, such that E is satisfiable if and only if G has an independent set of size k. Let $$E = (x + y + z) * (!x + z + !w) * (!x + !y + w) * (x + !z + w) * (!x + !z + !w)$$, and let $R(E) = \langle G \rangle \langle k \rangle$. - (a) Draw a picture of the graph G. - (b) What is the value of k? - (c) Circle an independent set of size k in your picture of G, and give a corresponding satisfying assignment of E. | 6. [30 points] Let L be the language of all strings over the binary alphabet number of 1's. Draw the diagram of a Turing Machine that accepts L . | $\{0,1\}$ which have an ever | |---|------------------------------| - 7. [30 points] The following general grammar generates the language of all strings over {1} of length a power of 2. Write a derivation of the string 1111 using this grammar. - 1. $S \rightarrow A1B$ - 2. $A \rightarrow AC$ - 3. $C1 \rightarrow 11C$ - 4. $CB \rightarrow B$ - 5. $A \rightarrow \epsilon$ - 6. $B \rightarrow \epsilon$ | 8. [30 points] some machin | language L is | decidable, | then L can | be enumerated | in canonical order by | |----------------------------|-----------------|------------|--------------|---------------|-----------------------| |