Computer Science 456/656 Spring 2009 Second Examination, March 26, 2009 The entire examination is 235 points.

	rue or False. [5 points each] $T = \text{true}$, $F = \text{false}$, and $O = \text{open}$, meaning that the answer is not known science at this time.
(a) Every subset of a regular language is regular.
(b) The complement of every \mathcal{NP} language is \mathcal{NP} .
(c) The complement of every recursive language is recursive.
(d) The complement of every recursively enumerable language is recursively enumerable.
(e) The set of all binary numerals for prime numbers is in \mathcal{P} .
(f) Every context-free language is accepted by some deterministic machine.
(g) The problem of whether two given context-free grammars generate the same language is decidable.
(1	h) Suppose a machine M accepts a language L_1 , and L_2 is a proper subset of L_1 . Then, M accepts L_2 .
2. Fi	ll the blanks. [5 points each blank]
(a) A machine M is if, given any configuration x of M , there is at most one configuration y such that $x \mapsto y$.
(b) A context-free grammar G is if there is some string in $L(G)$ which has more than one parse tree.
(c) If a language L_1 can be easily reduced to a language L_2 , then L_1 is at least as as L_2 . (Hint: the answer is either "hard" or "easy.")
3. [2	20 points] Give the definition of \mathcal{NP} -TIME. (Yes, it is possible to write it in this space.)

4. [30 points]

- 1. $S \to \epsilon$
- $2. S \rightarrow a_2 S_3 b_4 S_5$

	a	b	eof	S
0				1
1			halt	
2				
3				
4				
5				

Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the "balanced parentheses" language, where a represents a left parenthesis, and b represents a right parenthesis. Example strings include ϵ , ab, aabb, abab, and aabbab.

5. [40 points] We can prove that the independent set problem is \mathcal{NP} -complete by reducing 3-CNF-Sat to it. This reduction is a function R, where, if E is a Boolean expression in 3-CNF form, then $R(E) = \langle G \rangle \langle k \rangle$, where G is a graph and k is a non-negative number, such that E is satisfiable if and only if G has an independent set of size k.

Let
$$E = (x + y + z) * (!x + z + !w) * (!x + !y + w) * (x + !z + w) * (!x + !z + !w)$$
, and let $R(E) = \langle G \rangle \langle k \rangle$.

- (a) Draw a picture of the graph G.
- (b) What is the value of k?
- (c) Circle an independent set of size k in your picture of G, and give a corresponding satisfying assignment of E.

6. [30 points] Let L be the language of all strings over the binary alphabet number of 1's. Draw the diagram of a Turing Machine that accepts L .	$\{0,1\}$ which have an ever

- 7. [30 points] The following general grammar generates the language of all strings over {1} of length a power of 2. Write a derivation of the string 1111 using this grammar.
 - 1. $S \rightarrow A1B$
 - 2. $A \rightarrow AC$
 - 3. $C1 \rightarrow 11C$
 - 4. $CB \rightarrow B$
 - 5. $A \rightarrow \epsilon$
 - 6. $B \rightarrow \epsilon$

8. [30 points] some machin	language L is	decidable,	then L can	be enumerated	in canonical order by