The entire examination is 235 points.

1. True or False. [5 points each] T = true, F = false, and O = open, meaning that the answer is not known to science at this time.

 (a) ______ Every subset of a regular language is regular.

 (b) ______ The complement of every \(\mathcal{NP} \) language is \(\mathcal{NP} \).

 (c) ______ The complement of every recursive language is recursive.

 (d) ______ The complement of every recursively enumerable language is recursively enumerable.

 (e) ______ The set of all binary numerals for prime numbers is in \(\mathcal{P} \).

 (f) ______ Every context-free language is accepted by some deterministic machine.

 (g) ______ The problem of whether two given context-free grammars generate the same language is decidable.

 (h) ______ Suppose a machine \(M \) accepts a language \(L_1 \), and \(L_2 \) is a proper subset of \(L_1 \). Then, \(M \) accepts \(L_2 \).

2. Fill the blanks. [5 points each blank]

 (a) A machine \(M \) is ______________________ if, given any configuration \(x \) of \(M \), there is at most one configuration \(y \) such that \(x \mapsto y \).

 (b) A context-free grammar \(G \) is ______________________ if there is some string in \(L(G) \) which has more than one parse tree.

 (c) If a language \(L_1 \) can be easily reduced to a language \(L_2 \), then \(L_1 \) is at least as _________ as \(L_2 \).

 (Hint: the answer is either “hard” or “easy.”)

3. [20 points] Give the definition of \(\mathcal{NP} \)-time. (Yes, it is possible to write it in this space.)
4. [30 points]

1. $S \rightarrow \epsilon$

2. $S \rightarrow a_{2}S_{3}b_{4}S_{5}$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>eof</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>halt</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the ACTION and GOTO tables of an LALR parser for the grammar given above. This grammar unambiguously generates the “balanced parentheses” language, where a represents a left parenthesis, and b represents a right parenthesis. Example strings include ϵ, ab, $aabb$, $abab$, and $aabbab$.
5. [40 points] We can prove that the independent set problem is \mathcal{NP}-complete by reducing 3-CNF-Sat to it. This reduction is a function R, where, if E is a Boolean expression in 3-CNF form, then $R(E) = (G)(k)$, where G is a graph and k is a non-negative number, such that E is satisfiable if and only if G has an independent set of size k.

Let $E = (x + y + z) \cdot (\overline{x} + z + \overline{w}) \cdot (\overline{x} + y + \overline{w}) \cdot (x + \overline{z} + \overline{w}) \cdot (\overline{x} + \overline{z} + \overline{w})$, and let $R(E) = (G)(k)$.

(a) Draw a picture of the graph G.
(b) What is the value of k?
(c) Circle an independent set of size k in your picture of G, and give a corresponding satisfying assignment of E.
6. [30 points] Let L be the language of all strings over the binary alphabet $\{0, 1\}$ which have an even number of 1's. Draw the diagram of a Turing Machine that accepts L.
7. [30 points] The following general grammar generates the language of all strings over \(\{1\} \) of length a power of 2. Write a derivation of the string 1111 using this grammar.

1. \(S \rightarrow A1B \)
2. \(A \rightarrow AC \)
3. \(C1 \rightarrow 11C \)
4. \(CB \rightarrow B \)
5. \(A \rightarrow \epsilon \)
6. \(B \rightarrow \epsilon \)
8. [30 points] Prove that, if a language L is decidable, then L can be enumerated in canonical order by some machine.