Boolean Satisfiability

There are many alternative ways to define a Boolean expression, but for our discussion, we must fix one of them. We define a string to be a Boolean expression if it is generated by the following context-free grammar G, with start symbol S: Let BOOL be the language of all strings generated by G.

- $S \rightarrow !S$ (logical not)
- $S \rightarrow S \Rightarrow S$ (implies)
- $S \rightarrow S \equiv S$ (logical equal)
- $S \rightarrow S \neq S$ (logical not equal)
- $S \rightarrow S \ast S$ (logical and)
- $S \rightarrow S + S$ (logical or)
- $S \rightarrow (S)$
- $S \rightarrow I$ (I generates all identifiers)

The strings generated by I are called identifiers. An assignment of a Boolean expression E is an assignment of each identifier in I to a logical value, either 0 (false) or 1 (true). We say that an assignment satisfies E if evaluation of E yields 1, after replacing each identifier by its assigned value. Otherwise, E is not satisfiable, i.e., a contradiction. Evaluation uses the rules of precedence of C++.

Definition 1 A language L is \mathcal{NP}-complete if there is a \mathcal{P}-time reduction of any given \mathcal{NP}-time language to L.

We define an instance of the Boolean satisfiability problem to be a Boolean expression, $E \in$ BOOL, where $E \in$ SAT if E is satisfiable.

Theorem 1 Every \mathcal{NP}-time language has a \mathcal{P}-time reduction to SAT.

Thus, by definition, SAT is \mathcal{NP}-complete. You can find the proof of Theorem 1 on the internet.

Conjunctive Normal Form

We say that a Boolean expression E is in conjunction normal form, or CNF, if E is the conjunction of clauses, each of which consists of the disjunction of terms, each of which is a variable or the negation of a variable. We say that $E \in$ CNF is in 3CNF if each of its clauses has three terms. That is,

$$E = C_1 \ast C_2 \ast \cdots \ast C_k$$

where $C_i = (t_{i1} + t_{i2} + t_{i3})$, and where each term t_{ij} is a variable or the negation of a variable. 2CNF, 4CNF, etc. are defined similarly.

An instance of the 3SAT problem is a Boolean expression in 3CNF form. An expression E
is a member of the language 3SAT if it is satisfiable and in 3CNF form. Thus, $3\text{SAT} = \text{3CNF} \cap \text{SAT}$.

Polynomial Time Reduction of SAT to 3SAT

We define two Boolean expressions E and E' to be *sat-equivalent* if they both have the same satisfiability, *i.e.*, if either E and E' are both satisfiable or E and E' are both contradictions. We will define a \mathcal{P}–time reduction of SAT to 3SAT, *i.e.*, a \mathcal{P}–time function

$$R : \text{BOOL} \rightarrow \text{3CNF}$$

such that $E' = R(E)$ is sat-equivalent to E, for any Boolean expression E. We first construct a parse tree for E, using the grammar G. and we simplify the parse tree to combine equivalent nodes. We choose a set of identifiers that are not used for E, such as e_0, e_1, \ldots, and place one identifier at each internal node of the parse tree, where e_0 is placed at the root. For each internal node, we write a Boolean expression stating that the variable at that node is equal to the concatenation of its children. Let E'' be the e_0 with the conjunction of those expressions. E'' is sat-equivalent to E. We then use the following table to replace each clause of E'' by a 3CNF expression. The resulting expression is in 3CNF form, and is sat-equivalent to E.

<table>
<thead>
<tr>
<th>$a \equiv b + c$</th>
<th>equals</th>
<th>$(a+b) * (a+b+c) * (a+b+c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \equiv b + c$</td>
<td>equals</td>
<td>$(a+b) * (a+b+c) * (a+b+c)$</td>
</tr>
<tr>
<td>$a \equiv b + c$</td>
<td>equals</td>
<td>$(a+b) * (a+b+c) * (a+b+c)$</td>
</tr>
<tr>
<td>$a \equiv b + c$</td>
<td>equals</td>
<td>$(a+b) * (a+b+c) * (a+b+c)$</td>
</tr>
<tr>
<td>$a \equiv b + c$</td>
<td>equals</td>
<td>$(a+b) * (a+b+c) * (a+b+c)$</td>
</tr>
<tr>
<td>$a \equiv b + c$</td>
<td>equals</td>
<td>$(a+b) * (a+b+c) * (a+b+c)$</td>
</tr>
</tbody>
</table>

Theorem 2 If SAT is \mathcal{NP}–complete then 3SAT is \mathcal{NP}–complete.

Example

Let $E = ! (x + y \Rightarrow z) * z$. We show the parse three and the compressed parse tree of E, and then we replace each internal node by a unique auxiliary variable.

Then

$$E'' = e_0 * (e_0 \equiv e_1 * z) * (e_1 \equiv e_2) * (e_2 \equiv e_3 \Rightarrow z) * (e_3 \equiv x + y)$$

Using the equalities given in the table, replace each clause of E'' by an expression in CNF form:

$$E' = e_0 * (!e_0 + e_1) * (e_0 + e_1 + !z) * (e_0 + e_1 + !z) * (e_1 + e_2) * (!e_1 + e_2)$$

$$* (e_2 + e_3) * (!e_2 + e_3 + z) * (e_2 + e_3 + !z) * (e_2 + e_3 + !z) * (e_3 + x + y) * (e_3 + x + y)$$

We can pad with redundant terms to change E' into strict 3CNF form.

1When convenient, we can allow clauses of fewer than three terms, by introducing redundant terms: For example, $(x + y)$ can be replaced by the equivalent $(x + y + y)$.

parse tree of E

compressed parse tree of E

compressed parse tree of E with auxiliary variables