Boolean Satisfiability

There are many alternative ways to define a Boolean expression, but for our discussion, we must fix one of them. We define a string to be a Boolean expression if it is generated by the following context-free grammar G, with start symbol S : Let BOOL be the language of all strings generated by G.

$$
\begin{aligned}
& S \rightarrow!S \text { (logical not) } \\
& S \rightarrow S \Rightarrow S \text { (implies) } \\
& S \rightarrow S \equiv S \text { (logical equal) } \\
& S \rightarrow S \neq S \text { (logical not equal) } \\
& S \rightarrow S * S \text { (logical and) } \\
& S \rightarrow S+S \text { (logical or) } \\
& S \rightarrow(S) \\
& S \rightarrow I \text { (I generates all identifiers) } \\
& I \rightarrow A N \text { (The first symbol of an identifier must be a letter) } \\
& A \rightarrow a|b| c|d| e|f| g|h| i|j| k|l| m|n| o|p| q|r| s|t| u|v| w|x| y \mid z \\
& N \rightarrow A N|0 N| 1 N|2 N| 3 N|4 N| 5 N|6 N| 7 N|8 N| 9 N \mid \lambda \\
& S \rightarrow 0 \\
& S \rightarrow 1
\end{aligned}
$$

The strings generated by I are called identifiers. An assignment of a Boolean expression E is an assignment of each identifier in I to a logical value, either 0 (false) or 1 (true). We say that an assignment satisfies E the if evaluation of E yields 1, after repacing each identifier by its assigned value. Otherwise, E is not satisfiable, i.e., a contradiction. Evaluation uses the rules of precedence of $\mathrm{C}++$.

Definition 1 A language L is $\mathcal{N} \mathcal{P}$-COMPlete if there is a \mathcal{P}-Time reduction of any given $\mathcal{N} \mathcal{P}$-time language to L.

We define an instance of the Boolean satisfiability problem to be a Boolean expression, $E \in$ BOOL, where $E \in$ SAT if E is satisfiable.

Theorem 1 Every $\mathcal{N} \mathcal{P}$-Time language has a \mathcal{P}-time reduction to SAT.
Thus, by definition, SAT is $\mathcal{N} \mathcal{P}$-complete. You can find the proof of Theorem 1 on the internet.

Conjunctive Normal Form

We say that a Boolean expression E is in conjunction normal form, or CNF, if E is the conjunction of clauses, each of which consists of the disjunction of terms, each of which is a variable or the negation of a variable. We say that $E \in \mathrm{CNF}$ is in 3CNF if each of its clauses has three terms. That is,

$$
E=C_{1} * C_{2} * \cdots * C_{k}
$$

where $C_{i}=\left(t_{i 1}+t_{i 2}+t_{i 3}\right)$, and where each term $t_{i j}$ is a variable or the negation of a variable. $2 \mathrm{CNF}, 4 \mathrm{CNF}$, etc. are defined similarly.
An instance of the 3SAT problem is a Boolean expression in 3CNF form. An expression E
is a member of the language 3SAT if it is satisfiable and in 3CNF form. ${ }^{1}$ Thus, 3SAT = $3 \mathrm{CNF} \cap \mathrm{SAT}$.

Polynomial Time Reduction of SAT to 3SAT

We define two Boolean expressions E and E^{\prime} to be sat-equivalent if they both have the same satisfiability, i.e., if either E and E^{\prime} are both satisfiable or E and E^{\prime} are both contradictions. We will define a \mathcal{P}-TIME reduction of SAT to 3 SAT, i.e., a \mathcal{P}-TIME function

$$
R: \mathrm{BOOL} \rightarrow 3 \mathrm{CNF}
$$

such that $E^{\prime}=R(E)$ is sat-equivalent to E, for any Boolean expression E. We first construct a parse tree for E, using the grammar G. and we simplify the parse tree to combine equivalent nodes. We choose a set of identifiers that are not used for E, such as $e 0, e 1, \ldots$, and place one identifier at each internal node of the parse tree, where $e 0$ is placed at the root. For each internal node, we write a Boolean expression stating that the variable at that node is equal to the concatenation of its children. Let $E^{\prime \prime}$ be the e_{0} with the conjunction of those expressions. $E^{\prime \prime}$ is sat-equivalent to E. We then use the following table to replace each clause of $E^{\prime \prime}$ by a 3 CNF expression. The resulting expression is in 3CNF form, and is sat-equivalent to E.

$$
\begin{array}{rll}
a \equiv b+c & \text { equals } & (a+!b) *(!a+b+c) *(a+b+!c) \\
a \equiv b * c & \text { equals } & (!a+b) *(a+!b+!c) *(!a+!b+c) \\
a \equiv!b & \text { equals } & (a+b) *(!a+!b) \\
a \equiv b \Rightarrow c & \text { equals } & (a+b) *(!a+!b+c) *(a+!b+!c)
\end{array}
$$

Theorem 2 If SAT is $\mathcal{N} \mathcal{P}$-COMPLETE then 3SAT is $\mathcal{N} \mathcal{P}$-COMPLETE.

Example

Let $E=!(x+y \Rightarrow z) * z$. We show the parse three and the compressed parse tree of E, and then we replace each internal node by a unique auxiliary variable.

Then

$$
E^{\prime \prime}=e 0 *(e 0 \equiv e 1 * z) *(e 1 \equiv!e 2) *(e 2 \equiv e 3 \Rightarrow z) *(e 3 \equiv x+y)
$$

Using the equalities given in the table, replace each clause of $E^{\prime \prime}$ by an expression in CNF form:

$$
\begin{gathered}
E^{\prime}=e 0 *(!e 0+e 1) *(e 0+!e 1+!z) *(e 0+e 1+!z) *(e 1+e 2) *(!e 1+!e 2) \\
*(e 2+e 3) *(!e 2+!e 3+z) *(e 2+!e 3+!z) *(e 3+!x) *(!e 3+x+y) *(e 3+x+!y)
\end{gathered}
$$

We can pad with redundant terms to change E^{\prime} into strict 3 CNF form.

[^0]

[^0]: ${ }^{1}$ When convenient, We can allow clauses of fewer than three terms, by introducing redundant terms: For example, $(x+y)$ can be replaced by the equivalent $(x+y+y)$.

