The Partition Problem is \mathcal{NP} -complete

We define an instance of the *partion problem* to consist of any finite sequence of positive numbers. Y is a member of the language *Partition* if and only if the terms of Y can be partitioned into two subsequences, each of total half the total of the terms of Y.

Partition is clearly \mathcal{NP} , since, if $Y \in$ Partition, either one of the subsequences is a polynomial length certificate.

Reduction of Subset_Sum to Partition

We define an instance of the subset sum problem to be an ordered pairs (X, C) where C is a number and X is a sequence of positive numbers. The ordered pair (C, X) is a member of the language Subset_Sum if there is a subsequence of X whose sum is C.

We define R, a \mathcal{P} -TIME reduction of Subset_Sum to Partition. Let (X, C) be an instance of the subset sum problem, where $X = x_1, \ldots x_n$. Let $S = \sum_{i=1}^n x_i$. Without loss of generality, $0 \le C \le S$.

Let R(X, C) be a sequence $Y = y_1, \ldots, y_n, y_{n+1}, y_{n+2}$, where $y_i = x_i$ for $i \leq n, y_{n+1} = C + 1$, and $y_{n+2} = S - C + 1$. Then $Y \in$ Partition if there are two disjoint subsequences of Y each of sum S + 1.

Lemma 1 $(X, C) \in Subset_Sum if and only if <math>Y \in Partition$.

Proof: Suppose $(X, C) \in$ Subset_Sum. Let Z be a subsequence of X whose sum is C. Then $Z + \{y_{n+2}\}$ is a subsequence of Y whose sum is S + 1. Conversely, suppose Y is partitioned into disjoint subsequences each of sum S + 1. Neither of those subsequences contains both of the last two terms of Y, since their total exceeds S + 1. Thus one subsequence, say W, contains $y_{n+2} = S - C + 1$. Remove y_{n+2} from W to obtain a subsequence of X of whose sum is C.

We immediately have:

Theorem 1 If Subset_Sum is \mathcal{NP} -Complete then Partition is \mathcal{NP} -Complete