The Partition Problem is $\mathcal{N} \mathcal{P}$-COMPlete

We define an instance of the partion problem to consist of any finite sequence of positive numbers. Y is a member of the language Partition if and only if the terms of Y can be partitioned into two subsequences, each of total half the total of the terms of Y.

Partition is clearly $\mathcal{N} \mathcal{P}$, since, if $Y \in$ Partition, either one of the subsequences is a polynomial length certificate.

Reduction of Subset_Sum to Partition

We define an instance of the subset sum problem to be an ordered pairs (X, C) where C is a number and X is a sequence of positive numbers. The ordered pair (C, X) is a member of the language Subset_Sum if there is a subsequence of X whose sum is C.
We define R, a \mathcal{P}-Time reduction of Subset_Sum to Partition. Let (X, C) be an instance of the subset sum problem, where $X=x_{1}, \ldots x_{n}$. Let $S=\sum_{i=1}^{n} x_{i}$. Without loss of generality, $0 \leq C \leq S$.

Let $R(X, C)$ be a sequence $Y=y_{1}, \ldots y_{n}, y_{n+1}, y_{n+2}$, where $y_{i}=x_{i}$ for $i \leq n, y_{n+1}=C+1$, and $y_{n+2}=S-C+1$. Then $Y \in$ Partition if there are two disjoint subsequences of Y each of sum $S+1$.

Lemma $1(X, C) \in$ Subset_Sum if and only if $Y \in$ Partition.
Proof: Suppose $(X, C) \in$ Subset_Sum. Let Z be a subsequence of X whose sum is C. Then $Z+$ $\left\{y_{n+2}\right\}$ is a subseqence of Y whose sum is $S+1$. Conversely, suppose Y is partitioned into disjoint subsequences each of sum $S+1$. Neither of those subsequences contains both of the last two terms of Y, since their total exceeds $S+1$. Thus one subsequence, say W, contains $y_{n+2}=S-C+1$. Remove y_{n+2} from W to obtain a subsequence of X of whose sum is C.

We immediately have:
Theorem 1 If Subset_Sum is $\mathcal{N} \mathcal{P}$-complete then Partition is $\mathcal{N} \mathcal{P}$-complete

