
Proofs can be Arbitrarily Long

We measure the length of a mathematical proposition, or a proof, to be its number of symbols,
when written in a formal language L in such a way that a computer could verify correctness of
the proof. We let Σ be the alphabet of L.

Theorem 1 If F is a recursive function from integers to integers, then there is some mathematical

statement S which has a proof, such that any proof of S has length greater than F (|S|).

Proof: Let us suppose that Theorem 1 is false. Then there is a recursive function F such that,
for any n and for any provable proposition S of length n, S has a proof of length at most F (n).

Let V be a proof verification machine. If S is any statement and P is any string, V decides
whether P is a proof of S.

We now show that the halting problem is decidable. Pick a string x. Then “x ∈ H” is a
mathematical statement, and can be expressed formally as a string S ∈ Σ∗. Since H is recursively
enumerable, every member of H can be proved to be a member of H, that is, if S is true it has
a proof. Let n = |S|, the length of the statement S. By our hypothesis, either x /∈ H, or there is
some string y which is a proof of S and which has length at most F (n).

Calculate F (n). Let y1, y2, . . . yN , (for some large N) be the list of all strings of length at most
F (n) over Σ. For each yi, run V with input (S, yi). By our hypothesis, x ∈ H if and only if there
is some proof of S of length at most F (n), that is, if V accepts the pair (S, yi) for some i ≤ N .
Since there are only finitely many yi, this is a finite task; if we fail to find a proof, then x /∈ H.

Thus, we can decide whether x ∈ H, contradicting the known fact that H is undecidable. �

1

