Maximum Contiguous Subsequence

Recall problem 6.1 on page 177 of your textbook. Let $a_{1}, \ldots a_{n}$ be the sequence, which may include both positive and negative numbers. The problem is to find the maximum sum of any contiguous subsequence.
Let C_{k} be the maximum of zero, and the maximum sum of any contiguous subsequence of $a_{1}, \ldots a_{k}$, and let B_{k} be the maximum of zero, and the maximum sum of any contiguous subsequence that ends at a_{k}, We let $B_{0}=C_{0}=0$ by default.

```
B[0] = 0;
C[0] = 0;
for(int k = 1; k <= n; k++)
    {
        B[k] = max (0,B[k-1]+a[k]);
        C[k] = max(C[k-1],B[k]);
    }
cout << ''The maximum sum of any ":
cout << "contiguous subsequence is ";
cout << C[n] << endl;
```

The problem can be reduced to the maximum path problem in a weighted layered directed graph, as shown below. In our reduction, each layer has up to three nodes, $A[k-1], B[k]$, and Z, which is always zero.

We illustrate the layered graph obtained from the input sequence $3,-1,2,-3,-2,3,1,-2,5,-3$, 2 of length $n=11$. The red numerals are the solution to the single source maximum path problem, and the green line indicates the maximum path to A_{n}, which shows that the solution is the contiguous subsequence $3,1,-2,5$, whose total is 7 .

Parallel Computation

Instead of using dynamic programming, we can solve the maximum path problem by (max, +) matrix multiplication. Each layer is represented by a vector of length 1 , 2 , or 3 . The first of those vectors is (0). Each subsequent vector is the (max, +) product of the previous vector by a matrix. The product of these matrices can be computed in parallel by n processors in $O(\log n)$ time, and then multiplied by the initial vector.

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 3 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & -1 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & 2 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & -3 & -\infty \\
-\infty & 0 & 0
\end{array}\right) \\
\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & -2 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & 3 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & 1 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & -2 & -\infty \\
-\infty & 0 & 0
\end{array}\right) \\
\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & 5 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -\infty & -\infty \\
0 & -3 & -\infty \\
-\infty & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -\infty \\
0 & 2 \\
-\infty & 0
\end{array}\right)\binom{0}{0}=(7)
\end{gathered}
$$

In the example, the product of the 13 matrices is (7); applying to the initial vector: $(0)(7)=(7)$.

