
Olympiads in Informatics, 2013, Vol. 7, 90–100 90
 2013 Vilnius University

Where to Use and How not to Use Polynomial

String Hashing

Jakub PACHOCKI, Jakub RADOSZEWSKI
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

Banacha 2, 02-097 Warsaw, Poland

e-mail: {pachocki,jrad}@mimuw.edu.pl

Abstract. We discuss the usefulness of polynomial string hashing in programming competition

tasks. We show why several common choices of parameters of a hash function can easily lead to

a large number of collisions. We particularly concentrate on the case of hashing modulo the size

of the integer type used for computation of fingerprints, that is, modulo a power of two. We also

give examples of tasks in which string hashing yields a solution much simpler than the solutions

obtained using other known algorithms and data structures for string processing.

Key words: programming contests, hashing on strings, task evaluation.

1. Introduction

Hash functions are used to map large data sets of elements of an arbitrary length (the

keys) to smaller data sets of elements of a fixed length (the fingerprints). The basic appli-

cation of hashing is efficient testing of equality of keys by comparing their fingerprints.

A collision happens when two different keys have the same fingerprint. The way in which

collisions are handled is crucial in most applications of hashing. Hashing is particularly

useful in construction of efficient practical algorithms.

Here we focus on the case of the keys being strings over an integer alphabet Σ =

{0, 1, . . . , A − 1}. The elements of Σ are called symbols.
An ideal hash function for strings should obviously depend both on the multiset of the

symbols present in the key and on the order of the symbols. The most common family of

such hash functions treats the symbols of a string as coefficients of a polynomial with an

integer variable p and computes its value modulo an integer constantM :

H(s1s2s3 . . . sn) = (s1 + s2p+ s3p
2 + · · · + snp

n−1) modM.

A careful choice of the parametersM , p is important to obtain “good” properties of the

hash function, i.e., low collision rate.

Fingerprints of strings can be computed in O(n) time using the well-known Horner’s

method:

hn+1 = 0, hi = (si + phi+1) modM for i = n, n − 1, . . . , 1. (1)



Where to Use and How not to Use Polynomial String Hashing 91

Polynomial hashing has a rolling property: the fingerprints can be updated efficiently

when symbols are added or removed at the ends of the string (provided that an array of

powers of p modulo M of sufficient length is stored). The popular Rabin–Karp pattern

matching algorithm is based on this property (Karp and Rabin, 1987). Moreover, if the

fingerprints of all the suffixes of a string are stored as in (1), one can efficiently find the

fingerprint of any substring of the string:

H(si . . . sj) = (hi − pj−i+1hj+1) modM. (2)

This enables efficient comparison of any pair of substrings of a given string.

When the fingerprints of two strings are equal, we basically have the following op-

tions: either we consider the strings equal henceforth, and this way possibly sacrifice

the correctness in the case a collision occurs, or simply check symbol-by-symbol if the

strings are indeed equal, possibly sacrificing the efficiency. The decision should be made

depending on a particular application.

In this article we discuss the usefulness of polynomial string hashing in solutions of

programming competition tasks. We first show why several common ways of choosing

the constantsM and p in the hash function can easily lead to a large number of collisions

with a detailed discussion of the case in whichM = 2k. Then we consider examples of

tasks in which string hashing applies especially well.

2. How to Choose Parameters of Hash Function?

2.1. Basic Constraints

A good requirement for a hash function on strings is that it should be difficult to find a

pair of different strings, preferably of the same length n, that have equal fingerprints. This

excludes the choice ofM < n. Indeed, in this case at some point the powers of p corre-

sponding to respective symbols of the string start to repeat. Assume that pi ≡ pj modM

for i < j < n. Then the following two strings of length n have the same fingerprint:

0 . . . 0
� �� �

i

a1a2 . . . an−j 0 . . . 0
� �� �

j−i

and 0 . . . 0
� �� �

j

a1a2 . . . an−j .

Similarly, if gcd(M,p) > 1 then powers of p modulo M may repeat for exponents

smaller than n. The safest choice is to set p as one of the generators of the groupU(ZM ) –

the group of all integers relatively prime to M under multiplication modulo M . Such

a generator exists if M equals 2, 4, qa or 2qa where q is an odd prime and a � 1 is

integer (Weisstein, on-line). A generator of U(ZM ) can be found by testing a number of

random candidates. We will not get into further details here; it is simply most important

not to chooseM and p for whichM | pi for any integer i.

A slightly less obvious fact is that it is bad to choose p that is too small. If p < A

(the size of the alphabet) then it is very easy to show two strings of length 2 that cause a



92 J. Pachocki, J. Radoszewski

collision:

H(01) = H(p0).

2.2. Upper Bound onM

We also need to consider the magnitude of the parameter M . Let us recall that most

programming languages, and especially the languages C, C++, Pascal that are used for

IOI-style competitions, use built-in integer types for integer manipulation. The most pop-

ular such types operate on 32-bit or 64-bit numbers which corresponds to computations

modulo 232 and 264 respectively. Thus, to be able to use Horner’s method for fingerprint

computation (1), the value (M − 1) · p+ (M − 1) = (M − 1) · (p+ 1) must fit within

the selected integer type. However, if we wish to compute fingerprints for substrings of a

string using the (2), we need (M − 1)2 + (M − 1) to fit within the integer type, which

bounds the range of possible values ofM significantly. Alternatively, one could choose

a greater constantM and use a fancier integer multiplication algorithm (which is far less

convenient).

2.3. Lower Bound onM

On the other sideM is bounded due to the well-known birthday paradox: if we consider

a collection of m keys with m � 1.2
√
M then the chance of a collision to occur within

this collection is at least 50% (assuming that the distribution of fingerprints is close to

uniform on the set of all strings). Thus if the birthday paradox applies then one needs to

chooseM = ω(m2) to have a fair chance to avoid a collision. However, one should note

that not always the birthday paradox applies. As a benchmark consider the following two

problems.

Problem 1: Longest Repeating Substring. Given a string s, compute the longest string

that occurs at least twice as a substring of s.

Problem 2: Lexicographical Comparison. Given a string s and a number of queries

(a, b, c, d) specifying pairs of substrings of s: sasa+1 . . . sb and scsc+1 . . . sd, check, for

each query, which of the two substrings is lexicographically smaller.

A solution to Problem 1 uses the fact that if s has a repeating substring of length k

then it has a repeating substring of any length smaller than k. Therefore we can apply bi-

nary search to find the maximum length k of a repeating substring. For a candidate value

of k we need to find out if there is any pair of substrings of s of length k with equal finger-

prints. In this situation the birthday paradox applies. Here we assume that the distribution

of fingerprints is close to uniform, we also ignore the fact that fingerprints of consecutive

substrings heavily depend on each other – both of these simplifying assumptions turn out

not to influence the chance of a collision significantly.

The situation in Problem 2 is different. For a given pair of substrings, we apply binary

search to find the length of their longest common prefix and afterwards we compare the



Where to Use and How not to Use Polynomial String Hashing 93

symbols that immediately follow the common prefix, provided that they exist. Here we

have a completely different setting, since we only check if specific pairs of substrings are

equal and we do not care about collisions across the pairs. In a uniform model, the chance

of a collision within a single comparison is 1
M , and the chance of a collision occurring

withinm substring comparisons does not exceed m
M . The birthday paradox does not apply

here.

2.4. What ifM = 2k?

A very tempting idea is not to select any value ofM at all: simply perform all the compu-

tations modulo the size of the integer type, that is, modulo 2k for some positive integer k.

Apart from simplicity we also gain efficiency since the modulo operation is relatively

slow, especially for larger integer types. That is why many contestants often choose this

method when implementing their solutions. However, this might not be the safest choice.

Below we show a known family of strings which causes many collisions for such a hash

function.

This family is the ubiquitous Thue–Morse sequence (Allouche and Shallit, 1999). It

is defined recursively as follows:

τ0 = 0; τi = τi−1τ̄i−1 for i > 0

where x̄ is the sequence resulting by negating the bits of x. We have:

τ0 = 0, τ1 = 01, τ2 = 0110, τ3 = 01101001, τ4 = 0110100110010110, . . .

and clearly the length of τi is 2i.

LetW (s) be the fingerprint of a string s without any modulus:

W (s1s2s3 . . . sn) = s1 + s2p+ s3p
2 + · · · + snp

n−1.

We will show the following property of the Thue–Morse sequence that uncovers the rea-

son for its aforementioned especially bad behavior when hashing moduloM = 2k.

Theorem 1. For any n � 0 and 2 � p, 2n(n+1)/2 | W (τ̄n) − W (τn).

Proof. By the recursive definition – τn = τn−1τ̄n−1 and, similarly, τ̄n = τ̄n−1τn−1 – we

have:

W (τ̄n) − W (τn) =W (τ̄n−1) + p2
n−1

W (τn−1) − W (τn−1) − p2
n−1

W (τ̄n−1)

=W (τ̄n−1)(1 − p2
n−1

) − W (τn−1)(1 − p2
n−1

)

= (1 − p2
n−1

)(W (τ̄n−1) − W (τn−1)).

Now it is easy to show by induction that:

W (τ̄n) − W (τn) = (1 − p2
n−1

)(1 − p2
n−2

) . . . (1 − p).



94 J. Pachocki, J. Radoszewski

To conclude the proof, it suffices to argue that

2i | 1 − p2
i−1

for any i � 1. (3)

This fact can also be proved by induction. For i = 1 this is a consequence of the fact that

p is odd. For the inductive step (i > 1) we use the following equality:

1 − p2
i−1

=
�
1 − p2

i−2��
1 + p2

i−2�
.

The second factor is even again because p is odd. Due to the inductive hypothesis, the first

factor is divisible by 2i−1. This concludes the inductive proof of (3) and, consequently,

the proof of the whole theorem. �

By Theorem 1, the strings τn and τ̄n certainly yield a collision if n(n + 1)/2 ex-

ceeds the number of bits in the integer type. For instance, for 64-bit integers it suffices

to take τ11 and τ̄11 which are both of length 2048. Finally, let us note that our example

is really vicious – it yields a collision regardless of the parameter p, provided that it is

odd (and choosing an even p is surely bad if M is a power of two). This example can

also be extended by sparsifying the strings (i.e., inserting segments consisting of a large

number of zeros) to eliminate with high probability a heuristic algorithm that additionally

checks equality of a few random symbols at corresponding positions of the strings if their

fingerprints are equal.

The same example was described in a recent blog post related to programming com-

petitions (Akhmedov, 2012).

3. Usefulness of String Hashing

In the previous section we have described several conditions that limit the choice of con-

stants for string hashing. In some applications it is difficult to satisfy all these conditions

at the same time. In contrast, in this section we show examples of problems that are more

difficult to solve without using string hashing. Two particularly interesting problems we

describe in detail, and at the end we list several other examples of tasks from Polish pro-

gramming competitions. In the algorithms we do not describe how to handle collisions,

that is, we make an optimistic assumption that no collisions occur and thus agree to obtain

a heuristic solution.

We have already mentioned that string hashing can be used to check equality of sub-

strings of a given string. For the same purpose one could use the Dictionary of Basic

Factors (O(n log n) time and space preprocessing for a string of length n) or the suf-

fix tree/suffix array (O(n) time and space preprocessing for a constant-sized alphabet in

the basic variant, both data structures are relatively complex). More on these data struc-

tures can be found, for instance, in the books Crochemore et al. (2007) and Crochemore

and Rytter (2003). However, in the following problem it is much more difficult to ap-

ply any of these data structures instead of string hashing. This is a task from the fi-



Where to Use and How not to Use Polynomial String Hashing 95

nal round of a Polish programming competition Algorithmic Engagements 2011 (see

http://main.edu.pl/en/archive/pa/2011/bio).

Problem 3: Computational Biology.We are given a string s = s1 . . . sn over a constant-

sized alphabet. A cyclic substring of s is a string t such that all cyclic rotations of t are

substrings of s 1. For a cyclic substring t of s, we define the number of cyclic occurrences

of t in s as the total number of occurrences of distinct cyclic rotations of t within s. We

would like to find a cyclic substring of s of a given lengthm that has the largest number

of cyclic occurrences. We are to output this number of occurrences.

For example, consider the string s =BABABBAAB and m = 3. The string AAB is its

cyclic substring with 3 cyclic occurrences: one as AAB, one as ABA and one as BAA. The

string ABB is also a cyclic substring and it has 4 cyclic occurrences: one as ABB, two as

BAB and one as BBA. Thus the result is 4.

On the other hand, consider the string s =ABAABAABAABAAAAA and m = 5. Here

the result is just 1: a single cyclic occurrence of a cyclic substring AAAAA. Note that none

of the strings ABAAB and AABAA is a cyclic substring of the string and therefore they are

not included in the result.

Using string hashing, we solve this problem as follows. We start by computing fin-

gerprints of allm-symbol substrings of s: s1 . . . sm, s2 . . . sm+1,. . . – this can be done in

O(n) time using the rolling property of the hash function. Using a map-like data structure

storing fingerprints, for each of these substrings we count the number of times it occurs

in s.

Now we treat these substrings as vertices of a directed graph. The vertices are iden-

tified by the fingerprints. Each vertex is assigned its multiplicity: the number of occur-

rences of the corresponding substring in s. The edges of the graph represent cyclic ro-

tations by a single symbol: there is an edge from u1u2 . . . um to u2 . . . umu1 provided

that the latter string occurs as a substring of s (see Fig. 1). Note that the fingerprint of the

endpoint of any edge can be computed in O(1) time, again due to the rolling property of

the hash function.

Thus our problem reduces to finding the heaviest cycle in a graph in which each vertex

has in-degree and out-degree at most 1. This can be done in linear time, since such a graph

is a collection of cycles and paths. The whole solution has O(n log n) time complexity

due to the application of a map-like data structure.

The part of the above solution that causes difficulties in using the Dictionary of Basic

Factors or the suffix tree/suffix array data structures is the fact that if u1u2 . . . um is

a substring of s then u2 . . . umu1 is (almost never) a substring of s that could be easily

identified by its position in s.

We proceed to the second task example. Recall that in the pattern matching problem

we are given two strings, a pattern and a text, and we are to find all the occurrences of the

1A cyclic rotation of a string is constructed by moving its first letter to its end, possibly multiple times. For

example, there are three different cyclic rotations of ABAABA, namely BAABAA, AABAAB and ABAABA.



96 J. Pachocki, J. Radoszewski

Fig. 1. The graphs of substrings for: s =BABABBAAB and m = 3 (above) and s =ABAABAABAABAAAAA

andm = 5 (below)

pattern in the text. This problem has a number of efficient, linear time solutions, including

the Morris–Pratt algorithm, Boyer–Moore algorithm, and a family of algorithms work-

ing in constant space. Also suffix trees/suffix arrays can be used for this problem. It is,

however, rather difficult to extend any of these algorithms to work for the 2-dimensional

variant of the problem:

Problem 4: 2-Dimensional Pattern Matching. Let the pattern be an array composed of

m×m� symbols and the text be an array composed of n×n� symbols. Find all occurrences

of the pattern as a subarray of the text.

The Rabin–Karp pattern matching algorithm that is based on string hashing can easily

be extended to two dimensions. In each row of the text we compute the fingerprint of each

substring ofm symbols, this is done inO(nn�) time using the rolling property of the hash.

We create a new array of size n× (n� −m� +1) that contains these fingerprints. Thus the

problem reduces to 1-dimensional pattern matching in the columns of the new array with

the pattern composed of the fingerprints of the rows of the original pattern (see Fig. 2).

This problem can be solved in linear time using the standard Rabin–Karp algorithm.

We obtain a linear time algorithm that appears simpler than, e.g., the known

Bird/Baker 2-dimensional pattern matching algorithmwhich generalizes theMorris–Pratt

algorithm to the case of multiple patterns, see Crochemore and Rytter (2003).

Below we list four other examples of tasks in which string hashing can be applied to

obtain efficient solutions. The examples are ordered subjectively from the easiest to the

hardest task. For each task a short comment on its solution is provided.

Problem 5: Quasi-Cyclic-Rotations.We are given two strings s and t of the same length

n over English alphabet. We are to check if we can change exactly one letter in s so that



Where to Use and How not to Use Polynomial String Hashing 97

Fig. 2. Reduction of 2-dimensional pattern matching to 1-dimensional pattern matching in columns via string

hashing (in this example p = 10,M > 1000)

it becomes a cyclic rotation of t. This is a task from Algorithmic Engagements 2007:

http://main.edu.pl/en/archive/pa/2007/pra.

To check if s is an exact cyclic rotation of t, one could check if s occurs as a substring

of the string tt – this is a pattern matching problem. For quasi-cyclic-rotations we can

modify this approach: for each position i = 1, 2, . . . , n in tt we need to check if the

substring u of length n starting at this position differs from s exactly at one position. For

this it suffices to find the longest common prefix and the longest common suffix of u and

s. The model solution computes these values in linear total time for all u’s using the PREF

table, also called the table of prefixes (see Section 3.2 of Crochemore and Rytter (2003)).

An alternative solution applies binary search for the longest commom prefix/suffix and

checks a candidate prefix/suffix using string hashing. This solution requires storing of

fingerprints for s and tt and works in O(n log n) time.

Problem 6: Antisymmetry. We are given a string t = t1 . . . tn over {0, 1} alphabet.
For a substring u of t, by uR we denote the reversed string u and by ū we denote the

negation of u obtained by changing all the zeroes to ones and ones to zeroes. A substring

u of t is called antisymmetric if u = ūR. We are to count the number of substrings of

t that are antisymmetric (if the same antisymmetric substring occurs multiple times, we

count each of its occurrences). This is a task from 17th Polish Olympiad in Informatics:

http://main.edu.pl/en/archive/oi/17/ant.

Antisymmetric strings resemble palindromic strings. Recall Manacher’s algorithm

that finds in linear time, for each position i, the radius R[i] of the longest even-length

palindromic substring centered at this position (see Section 8.1 of Crochemore and Ryt-

ter (2003)). The model solution is based on a modification of Manacher’s algorithm that

finds, for each position i, the radius R�[i] of the longest antisymmetric substring centered



98 J. Pachocki, J. Radoszewski

at this position. However,R�[i] could alternatively be computed by applying binary search

and checking if a candidate radius is valid via string hashing. Here string fingerprints for

both t and t̄R need to be stored. The solution based on string hashing hasO(n log n) time

complexity.

Problem 7: Prefixuffix. We are given a string t = t1 . . . tn over English alpha-

bet. A prefixuffix of t is a pair (p, s) of a prefix and a suffix of t, each of length

at most n/2, such that s is a cyclic rotation of p. The goal of the task is to find

the longest prefixuffix of t. This is a task from 19th Polish Olympiad in Informatics:

http://main.edu.pl/en/archive/oi/19/pre.

The notion of a prefixuffix generalizes the notion of a border, which is a pair formed

by an equal prefix and suffix of t. The model solution for this task works in linear time and

is really tricky. Assume 2 | n and let t = xy, where x and y have the same length. Con-

sider the wordQ(x, y) (a “crossover” of x and y) defined as x1yn/2x2yn/2−1 . . . xn/2y1.

Then the result is l/2, where l is the length of the longest prefix of Q(x, y) that is a con-

catenation of two even-length palindromes. The value of l can be found in linear time

using the output of Manacher’s algorithm (already mentioned in Problem 6).

This solution deserves a short explanation. Note that (p, s) is a prefixuffix if p = uv

and s = vu for some words u and v. Then t = uvwzvu for some words w and z of equal

length. Thus x = uvw, y = zvu and Q(x, y) = Q(u, u)Q(v, v)Q(w, z). Now it suffices

to note that Q(u, u) and Q(v, v) are palindromes. E.g., if t = ababbabbabbaab then

x = ababbab, y = babbaab and

Q(x, y) = abbaaabbbbaabb = abba · aabbbbaa · bb.

Here l = 12 which yields a prefixuffix of t of length 6: (ababba, abbaab).

An alternative solution using string hashing was much simpler to come up with. Recall

that we need to find a representation t = uvwzvu with uv as long as possible. To find u,

we consider all the borders of t, and to find v, we need to know the longest border of each

substring of t obtained by removing the same number of letters from the front and from

the back of t, that is, a[i] = border(titi+1 . . . tn−itn−i+1). All the requested borders can

be found using string hashing in linear time. In particular, the latter ones, a[i], can be

computed for i = 1, 2, . . . , n/2 by observing that a[i] � a[i − 1] − 2.

Problem 8: String Similarity. We consider a family of strings, S1, . . . , Sn, each of

length l. We perform m operations, each of which consists in swapping a pair of letters

across some pair of the strings. The goal is to compute, for each i = 1, . . . , n, how many

strings among {Sj } were equal to Si at some moment in time, at maximum. This is a task

from 15th Polish Olympiad in Informatics: http://main.edu.pl/en/archive

/oi/15/poc.

Here the first idea that comes to mind is to use string hashing to identify which pairs

of strings are equal at respective moments in time. Note that fingerprints of the strings can

be updated easily when the letters are swapped. However, in the case of this task string

hashing is only the beginning of the solution. An efficient, O((nl + m) log (nl +m))



Where to Use and How not to Use Polynomial String Hashing 99

time solution requires keeping track of groups of equal strings. Roughly speaking, for

each valid fingerprint we compute the number of strings with this fingerprint at each

moment in time and then for each single string we find the maximum size of a group of

equal strings it belongs to at any moment in time.

4. Final Remarks

In general, polynomial string hashing is a useful technique in construction of efficient

string algorithms. One simply needs to remember to carefully select the modulusM and

the variable of the polynomial p depending on the application. A good rule of thumb is to

pick both values as prime numbers withM as large as possible so that no integer overflow

occurs and p being at least the size of the alphabet.

There is a number of string processing problems in which hashing enables to present

solutions that are competitive with the ones obtained using non-randomized algorithms.

This includes pattern matching in one and multiple dimensions and searching for specific

patterns, which includes palindromic substrings, cyclic rotations and common substrings.

The major virtue of hashing is itsO(n) time and space consumption. However, one should

always keep in mind that hashing is a heuristic algorithm.

References

Akhmedov, M. (2012). Anti-hash test. Codeforces Blog.

http://codeforces.com/blog/entry/4898.

Allouche, J.-P., Shallit, J. (1999). The ubiquitous Prouhet-Thue-Morse sequence. In: Ding, C., Helleseth, T.,

Niederreiter, H. (Eds.), Sequences and Their Applications, Proceedings SETA’98, New York, Springer-

Verlag, 1–16.

Crochemore, M., Hancart, C., Lecroq, T. (2007). Algorithms on Strings, Cambridge University Press.

Crochemore, M., Rytter, W. (2003). Jewels of Stringology, World Scientific.

Karp, R.M., Rabin, M.O. (1987). Efficient randomized pattern-matching algorithms. IBM Journal of Research

and Development – Mathematics and Computing, 31(2), 249–260.

Weisstein, E.W. Modulo multiplication group. MathWorld – a Wolfram Web Resource.

http://mathworld.wolfram.com/ModuloMultiplicationGroup.html.



100 J. Pachocki, J. Radoszewski

J. Pachocki (1991), computer science student at Faculty of Mathemat-

ics, Informatics and Mechanics, University of Warsaw, Poland. Silver

medalist of IOI’2009 in Plovdiv and winner of BOI’2009 in Stock-

holm, member of the runner-up team at the ACM ICPC World Finals

2012 in Warsaw. Problem setter for Polish Olympiad in Informatics and

CEOI’2011 in Gdynia, Poland.

J. Radoszewski (1984), teaching assistant at Faculty of Mathematics,

Informatics and Mechanics, University of Warsaw, Poland. Chair of

the jury of Polish Olympiad in Informatics, Polish team leader at IOI

2008–2010 and 2012, former chair of the jury of CEOI’2011 in Gdy-

nia and member of the HSC of IOI’2005 in Nowy S �acz, CEOI’2004 in

Rzeszów, and BOI’2008 in Gdynia, Poland. His research interests focus

on text algorithms and combinatorics.


