Computer Science 477/677 Fall 2019

University of Nevada, Las Vegas

Answers to First Examination September 18, 2019

1. True or False. [5 points each] Write T if the statement is known to be true, F it is known to be false, and O if it is open, meaning that science has not determined whether it is true or false.
(a) \mathbf{T} Any decision tree sorting algorithm must make $\Omega(n \log n)$ comparisons in the worst case.
(b) $\quad \mathbf{F}$ Bubblesort takes $O(n \log n)$ expected time on an array of size n in the average case, i.e. when items are randomly ordered.
(c) \mathbf{T} Mergesort takes $\Theta(n \log n)$ time on an array of size n.
(d) $\mathbf{O} \mathcal{P}$-TIME $=\mathcal{N} \mathcal{P}$-TIME.
(e) \mathbf{T} Quicksort takes $O(n \log n)$ expected time on an array of size n in the average case, i.e. when items are randomly ordered.
(f) \mathbf{F} There is a polynomial time algorithm for the halting problem.
2. Fill in the blanks. [5 points each blank.]
(a) Name a divide-and-conquer searching algorithm.
binary search
(b) Name two divide-and-conquer sorting algorithms.
mergesort
quicksort
3. In each of the following situations, write $O, \Omega . \Theta$ in the blank.
(a) $2^{n}=O\left(3^{n}\right)$
(b) $\log \left(2^{n}\right)=\Theta\left(\log \left(3^{n}\right)\right)$
(c) $n^{1.01}=\Omega\left(n \log ^{2} n\right)$
(d) $n^{0.1}=\Omega\left(\log ^{2} n\right)$
(e) $\sqrt{n}=\Omega\left(\log ^{3} n\right)$
(f) $n 2^{n}=O\left(3^{n}\right)$
(g) $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$
4. Give an asymptotic solution to each currence, using O, Ω, or Θ as appropriate. [5 points each]
(a) $F(n) \leq F(n-1)+\log n \quad F(n)=O(n \log n)$
(b) $H(n) \leq 2 H(n / 2)+O(1) \quad H(n)=O(n)$
(c) $H(n) \geq 2 H(n / 2)+n^{2} \quad H(n)=\Omega\left(n^{2}\right)$
(d) $K(n)=3 K(n / 3)+n . \quad K(n)=\Theta(n \log n)$
(e) $F(n)=F(n-\sqrt{n})+\sqrt{n} \quad F(n)=\Theta(n)$
(f) $G(n) \geq 2 G(n-1)+1 \quad G(n)=\Omega\left(2^{n}\right)$
(g) $T(n)=4 T(n / 2)+n^{2} \quad T(n)=\Theta\left(n^{2} \log n\right)$
5. [10 points] The following (incomplete) $\mathrm{C}++$ code implements which of the sorting algorithms we have discussed?
```
int A[n];
int main()
    {
        for(int i = 0; i < n; i++)
            for(int j = i+1; j < n; j++)
            if(A[j] < A[i]) swap(A[i],A[j]);
        return 1;
    }
```

selection sort
6. [20 points] Use polyphase mergesort to sort the list below. Show steps.

W C S A B J H U N O M R Q TVD Z X Y

W S BHN MQVZ Y
C AJU ORT D X

CW BHNORTYX
AJSU DMQVZ

ACJSUW
BDHMNOQRTVXYZ

ABCDHJMNOQRSTUVWXYZ
7. (a) [10 points] How many numbers above 1 and less than 187 are relatively prime to 187 ? $187=11 \cdot 17$, the product of two primes. The answer is $10 \cdot 16-1=159$
(b) [10 points] Find the mod 91 inverse of 4 . Ans: 23.
(c) [15 points] When I was in the seventh grade, I read a book which dicussed the number $9^{9^{9}}$. The number had never been written down in decimal notation, but what was known was: the number of digits,
the first so many (I forget how many) digits, and the last so many digits.
I found that puzzling at the time, but now I know how those things were calculated. For example, I calculate that the numeral for $9^{9{ }^{9}}$ has 369693100 digits. I also calculate that the first five digits are 42812 , but I am not so sure of that, because of rounding error.
You can do it, too. What is the last digit of the base ten numeral for $9^{9^{9}}$?
Ans: The last three digits are 289.
8. [20 points] Complete the following sentence: RSA one-way encryption will not be secure if anyone ever...

Can factor integers in polynomial time.

