
Computer Science 477/677 Fall 2019
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Answers to Second Examination October 14, 2019

1. Fill in the blanks.

(a) Every comparison-based sorting algorithm makes Ω(n log n) comparisons in the worst case.

(b) The Las Vegas algorithm for finding the median of a sequence of numbers makes Θ(n) comparisons on the

average, but Θ(n2) comparisons in the worst case.

(c) An undirected graph of n nodes cannot have more than
(

n

2

)

= n(n−1)
2

edges, while a directed graph of n

nodes cannot have more than n
2 directed edges. (Exact answers are required, not asymptotic notaion.)

(d) A directed graph has a topological order if and only if it is acyclic.

(e) To save space, a sparse graph should be represented as an array of lists of edges.

(f) For a digraph G with n vertices and m edges, it takes n+m time to construct GR, provided G is implemented

as an array of lists.

2. Let G be the directed graph G given below. Use the DFS algorithm we have given in class to find the

strong components of G.
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(a) Label the pre and post numbers of the vertices of G using depth first search.

(b) Construct GR by reversing the edges of G.

(c) Compute pre and post of GR, always starting with the vertex with the highest possible post number

from the previous step.

(d) During the DFS search of GR, each time the pre and post number of a vertex v differ by one, v is

the last vertex of the current strong component.

(e) The strong components are {A,B,C}, {D,E,G,F}, and {H}.



3. Values of the 2-parameter array C[n, k] for n ≥ 0 and 0 ≤ k ≤ n can be computed using dynamic

program, using:

(a) C[n, 0] = C[n, n] = 1 for all n.

(b) If 0 < k < n, then C[n, k] = C[n− 1, k − 1] + C[n− 1, k].

Compute the values of C[n, k] for all 0 ≤ k ≤ n ≤ 4.

Each C[n, k] is a subproblem. The problems C[n, 0] and C[n, n], for any n, are base cases. The dynamic

program is executed as follows.

• C[0, 0] = 1. Base case.

• C[1, 0] = 1. Base case.

• C[1, 1] = 1. Base case.

• C[2, 0] = 1. Base case.

• C[2, 2] = 1. Base case.

• C[3, 0] = 1. Base case.

• C[3, 3] = 1. Base case.

• C[4, 0] = 1. Base case.

• C[4, 4] = 1. Base case.

• C[2, 1] = C[1, 0] + C[1, 1] = 1 + 1 = 2

• C[3, 1] = C[2, 0] + C[2, 1] = 1 + 2 = 3

• C[3, 2] = C[2, 1] + C[2, 2] = 2 + 1 = 3

• C[4, 1] = C[3, 0] + C[3, 1] = 1 + 3 = 4

• C[4, 2] = C[3, 1] + C[3, 2] = 3 + 3 = 6

• C[4, 3] = C[3, 2] + C[3, 3] = 3 + 1 = 4
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4. Let G be the directed graph given below. Use Dijkstra’s algorithm to solve the single source shortest

path problem on G with start vertex A. Show your work.
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I will try to use the notation used in the code on page 110 of our textbook, Thus, the backpointer is

called prev. The second array is the minqueue, Q, where minimum dist node is on the left. Initially, A

is the only member of the queue, and its backpointer prev[A ] is undefined.

A B C D E F G H I J

dist 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

prev ⋆

A

0

At each step, we execute u = deletemin(Q). Thus u = A. We insert C into Q, since it is the only

outneighbor of A.

A B C D E F G H I J

dist 0 ∞ 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞

prev ⋆ A

C

4

Now we let u = deletemin(Q) = C, and we insert B and F into Q.

A B C D E F G H I J

dist 0 7 4 ∞ ∞ 10 ∞ ∞ ∞ ∞

prev ⋆ C A C

B F

7 10

Now we let u = deletemin(Q) = B, and we insert D into Q. Note that D is ahead of F in the priority.

A B C D E F G H I J

dist 0 7 4 9 ∞ 10 ∞ ∞ ∞ ∞

prev ⋆ C A B C

D F

9 10

Now we let u = deletemin(Q) = D, and we update dist(F) and prev(F).

A B C D E F G H I J

dist 0 7 4 9 ∞ 9 ∞ ∞ ∞ ∞

prev ⋆ C A B D

F

9
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Now we let u = deletemin(Q) = F, and we insert G into Q. Now we let u = deletemin(Q) = F, and we

insert G into Q.

A B C D E F G H I J

dist 0 7 4 9 ∞ 9 11 ∞ ∞ ∞

prev ⋆ C A B D F

G

11

Now we let u = deletemin(Q) = G, and we insert E and H into Q.

A B C D E F G H I J

dist 0 7 4 9 15 9 11 20 ∞ ∞

prev ⋆ C A B G D F G

E H

15 20

Now we let u = deletemin(E) = G, and we update dist[ H ] and prev[H ]

A B C D E F G H I J

dist 0 7 4 9 15 9 11 16 ∞ ∞

prev ⋆ C A B G D F E

H

16

Now we let u = deletemin(E) = H. Since H has no outneighbors, we do not insert anything into Q. Since

Q is empty, we are done. I and J are unreachable from A.

A B C D E F G H I J

dist 0 7 4 9 15 9 11 16 ∞ ∞

prev ⋆ C A B G D F E

5. Use the A∗ algorithm to find the shortest path from S to T. All edges have weight 1. The value of the

heuristic at each node is indicated in the figure.
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We write Q after each step. The node with minimum g = h+f is the first line.

h f g prev

S 3 0 3 ⋆
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Delete S, and insert C and E into Q.

h f g prev

D 3 1 4 S

C 4 1 5 S

Delete D and insert C and F into Q.

h f g prev

E 2 2 4 D

C 4 1 5 S

F 3 2 5 D

Delete E and insert G and H into Q.

h f g prev

C 4 1 5 S

F 3 2 5 D

G 2 3 5 E

H 2 3 5 E

Delete C and insert B into Q.

h f g prev

F 3 2 5 D

G 2 3 5 E

H 2 3 5 E

B 5 2 7 C

We do two steps at once. Delete F, then G, from Q.

h f g prev

H 2 3 5 E

B 5 2 7 C

Delete H and insert I into Q.

h f g prev

I 1 4 5 H

B 5 2 7 C

Delete I and insert T into Q. Since we have reached T, we are done.

h f g prev

T 0 5 5 I

B 5 2 7 C

Following the back pointers, we obtain the shortest path: S,D,E,H,I,T.
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6. Write the loop invariant of the main partition loop of quicksort, as given in the code below.

first+1 ≤ i ≤ lo ⇒ A[ i ] ≤ pivot and hi < i ≤ last ⇒ A[ i ] ≥ pivot

void quicksort(int first,int last) // sorts the subarray A[first .. last]

{

if(first < last) // if first >= last, we are done

{

int mid = (first+last)/2;

int pivot = A[mid];

swap(A[mid],A[first]); // move pivot to first position

int lo = first;

int hi = last;

// LOOP inveriant holds HERE

while(lo < hi) // MAIN PARTITION LOOP

{

// LOOP inveriant holds HERE

if(A[lo+1] > pivot and A[hi] < pivot)

{

swap(A[lo+1],A[hi]);

lo++;

hi--;

}

if(A[lo+1] <= pivot) lo++;

if(A[hi] >= pivot) hi--;

// LOOP inveriant holds HERE

} END MAIN PARTITION LOOP

// LOOP inveriant holds HERE

//assert(lo == hi);

swap(A[first],A[lo]); // place pivot between subarrays

quicksort(first,lo-1); // sort left subarray

quicksort(lo+1,last); // sort right subarray

}

}
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