University of Nevada, Las Vegas Computer Science 477/677 Fall 2019 Answers to Assignment 1: Due Wednesday August 28, 2019

1. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω. Θ in the blank.
(a) $n-100=\Theta(n-200)$
(b) $n^{1 / 2}=O\left(n^{2 / 3}\right)$
(c) $100 n+\log n=\Theta\left(n+\log ^{2} n\right)$
(d) $n \log n=\Omega(10 n+\log (10 n))$
(e) $\log (2 n)=\Theta(\log (3 n))$
(f) $10 \log n=\Theta\left(\log \left(n^{2}\right)\right)$
(g) $n^{1.01}=\Omega\left(n \log ^{2} n\right)$
(h) $n^{2} / \log n=\Omega\left(n \log ^{2} n\right)$
(i) $n^{0.1}=\Omega\left(\log ^{2} n\right)$
(j) $(\log n)^{\log n}=\Omega(n / \log n)$
(k) $\sqrt{n}=\Omega\left(\log ^{3} n\right)$
(l) $n^{1 / 2}=O\left(5^{\log _{2} n}\right)$
(m) $n 2^{n}=O\left(3^{n}\right)$
(n) $2^{n}=\Theta\left(2^{n+1}\right)$
(o) $n!=\Omega\left(2^{n}\right)$
(p) $\log n^{\log n}=O\left(2^{\left(\log _{2} n\right)^{2}}\right)$ [hard]
(q) $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$
2. Work problem $0.3(\mathrm{c})$ on page 9 of the textbook.

$$
\log _{2}\left(\frac{1+\sqrt{5}}{2}\right)
$$

3. For any positive integer input, say n, the second column is a string of bits. What does that bitstring represent?

The binary numeral for n, written in reverse.

