
University of Nevada, Las Vegas

University of Nevada, Las Vegas Computer Science 477/677 Fall 2019

Answers to Assignment 2: Due Wednesday September 4, 2019

I made an important mistake in my lecture when I told you that the secret key should be chosen so that

de%N = 1 That is incorrect.

The correction is: if N = pq where p and q are primes, then the public key e must be relatively

prime to (p− 1)(q − 1), and the private key d must be chosen so that de%(p− 1)(q − 1) = 1

Here are some additional helpful facts.

• If N is prime and gcd(N, a) = 1, i.e. a is relatively prime to N , then aN−1 %N = 1.

• If N = pq, where p and q are large primes, and if a is relatively prime to N , then a(p−1)(q−1) %N = 1.

1. (a) Work problem 1.11 on page 39 of the textbook.

The question reduces to whether 41536 %35 = 94824 %35.

35 = pq where p = 5 and q = 7 are primes. Thus, φ(35) = (p − 1)(q − 1) = 24. If n is relatively

prime to 35, then n24 %35 = 1, and nm %35 = nm%24 %35 for any m. Since 1536%24 = 0, we

have 41536 %35 = 40 %35 = 1. Since 9834%24 = 0, we have 94824 = 90 %35 = 1. Hence the answer

is yes.

(b) Work problem 1.14 on page 39 of the textbook, which is to design a fast algorithm for computing

Fn % p, where Fn is the nth Fibonacci number and p is a positive integer. The case p = 1 is trivial,

hence we assume p ≥ 2. We let Fn = Fn % p for short. Here are three algorithms for the problem.

i. Dynamic programming. F 1 = F 2 = 1 and Fn = Fn−2 +Fn−1 for all n ≥ 2. The dynamic pro-

gram has O(n) steps, and each step takes O(log p) time. Thus the dynamic program computes

Fn is O(n log p) time.

ii. Matrix multiplication. We can use the equation
(

Fn

Fn+1

)

=

(

0 1

1 1

)n(

0

1

)

on page 9 of our textbook and the method of calculating powers by repeated squaring, taking

everything modulo p. There are O(log n) matrix multiplications needed, each of which takes

M(logp) time. (Recall that M(n) is the time to multiply two n-bit numbers.) Thus, the time

to compute Fn by this method is O(log nM(log p)).

iii. Memoization. There is different recurrence relation for Fibonacci numbers. For any n ≥ 2:

Fn = F(n−1)/2Fn/2 + F(n+1)/2F(n+2)/2

where division is truncated integer division. Note that F5 = F 2
2 +F 2

3 , while F6 = F2F3+F3F4.

Using the recurrence

Fn = F (n−1)/2Fn/2 + F (n+1)/2F (n+2)/2

and using memoization: https://en.wikipedia.org/wiki/Memoization we compute values

from top down, starting with Fn, computing only the values that will be needed, and storing



them in a search structure. This way, the number of values of F i that need to be computed is

O(log n).

Memoization requires a search structure to hold intermediate values. The time to search for

each item is proportional to the logarithm of the number of values times the size of one value,

hence is O(log log n log p). Thus, the time to compute Fn by this method is O(log nM(log p) +

log n log log p) = O(log nM(log p)).

iv. Periodicity. The values of Fn are periodic: there is a number k = k(p) < p2 such that

Fn = Fn% k for all n. For example, k(2) = 3, k(3) = 8, k(4) = 6, k(5) = 20, k(6) = 24. We can

find the value of k, as well as the values of F i for all 1 ≤ i ≤ k, by linear search in O(p2 log p)

time. (There might be a faster method.) One of those values will be Fn% p. We can compute

n% p in O(log n log p) time. Thus this method takes O((p2 + log n) log p) time.

2. Work problem 1.27 on page 40 of your textbook. The public key is (391, 3), and (p − 1)(q − 1) = 352.

The private key is 235 since 235 · 3%352 = 1. The message is 41, and the crypt is 413 %391 = 105

3. Work problem 1.33 on page 41 of your textbook. Use Euclid’s algorithm to compute g = gcd(x, y), the

greatest common divisor of x and y. This takes O(n2) time, unless there is a faster algorithm for integer

division. Then lcm(x, y), the least common multiple of x and y is (x/g)y, Hence the time is O(n2). Can

you do better?

2


