University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019

Answers to Assignment 3: Due Wednesday September 11, 2019

1. Work Problem 2.4 on page 71 of your textbook. In each case, let n be the size of the original problem.

- The time for algorithm A satisfies the reucurrence $T(n)=5 T(n / 2)+\Theta(n)$. The solution to this recurrence is $T(n)=\Theta\left(n^{\log _{2} 5}\right)$.
- The time for algorithm B satisfies the reucurrence $T(n)=2 T(n-1)+\Theta(1)$. The solution to this recurrence is $T(n)=\Theta\left(2^{n}\right)$.
- The time for algorithm C satisfies the reucurrence $T(n)=9 T(n / 3)+\Theta\left(n^{2}\right)$. The solution to this recurrence is $T(n)=\Theta\left(n^{2}\right) \log n$, since $\log _{3} 9=2$.

Algorithm C is fastest, since $\log _{2} 5>2$.
2. The following problem is similar to problem 3.5 on page 71 of in your textbook. Solve the followring recurrences. Give a Θ bound if possible; otherwise if an Ω or an O bound.
(a) $T(n) \leq 5 T(n / 5)+1$.
$T(n)=O(n)$.
(b) $T(n)=5 T(n / 5)+n$.
$T(n)=\Theta(n \log n)$.
(c) $T(n) \geq 5 T(n / 5)+n^{2} . T(n)=\Omega\left(n^{2}\right)$.
(d) $T(n)=25 T(n / 5)+n^{2} . T(n)=\Theta\left(n^{2} \log n\right)$.
(e) $T(n) \leq T(n-1)+n^{4}$.
$T(n)=O\left(n^{5}\right)$.
(f) $T(n)=3 T(n-1)+1$.
$T(n)=\Theta\left(3^{n}\right)$.
(g) $T(n) \geq T(\sqrt{n})+1$. Let $T(n)=F(\ell)$ where $\ell=\log n$. (The base of the logarithm doesn't matter.) $T(\sqrt{n})=F(\log (\sqrt{n}))=F(\log n / 2)=F(\ell / 2)$. Rewriting the recurrence, we have $F(\ell) \geq F(\ell / 2)+1$, hence $T(n)=F(\ell)=\Omega(\log \ell)=\Omega(\log \log n)$.
3. Work problem $2.13(\mathrm{a}, \mathrm{b})$ in your textbook.
(a) $B_{3}=1, B_{5}=2$, and $B_{7}=5$.

$B_{n}=0$ if n is even, because a full binary tree must have an odd number of vertices.
(b) We have

$$
\begin{aligned}
& \quad \begin{array}{l}
B_{1}=1 \\
B_{3}=B_{1} B_{1}=1 \\
B_{5}=B_{3} B_{1}+B_{1} B_{3}=2 \\
B_{7}=B_{5} B_{1}+B_{3} B_{3}+B_{1} B_{5}=5 \\
\text { In general } B_{n}=\sum_{i=1}^{n / 2} B_{n-2 i} B_{2 i-1} \text { for } n \text { odd, } n \geq 3
\end{array} \\
& \text { The Catalan numbers are } 1,1,2,5,14,42, \ldots \text { and } B_{2 n+1} \text { is the } n^{\text {th }} \text { Catalan number } \\
& \qquad C_{n}=\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

4. Work problem 2.16 in you textbook.

Let the array have indices starting with zero, as in $C++$ Our first phase sets lo $=0$ and hi to be some integer such that $\mathrm{A}[\mathrm{hi}]>\mathrm{x}$. We initialize $\mathrm{hi}=1$, and keep doubling i until $\mathrm{A}[\mathrm{hi}]>\mathrm{x}$. Our loop invariant is that either $\mathrm{A}[\mathrm{i}]=\mathrm{x}$ for some $\mathrm{lo}<=\mathrm{i}<\mathrm{hi}$ or x is not an entry of the array.

The second phase is to use binary search to halve the size of the search inteveral at each step, until $\mathrm{hi}=10+1$. At this point, since the loop invariant still holds, either $\mathrm{A}\left[l_{0}\right]=\mathrm{x}$ or x is not in the array.

```
int lo = 0;
int hi = 1;
while(A[hi] <= x) hi = 2*hi;
while (lo+1 < hi)
    {
    int mid = (lo+hi)/2;
    if(A[mid] <= x) lo = mid; // loop invariant is maintained
    else hi = mid; // loop invariant is maintained
    }
if(A[lo] == x)
    cout << "A[" << lo << "] = " << x << endl;
else
    cout << x << " is not an entry in the array" << endl;
```

Each phase takes $O(\log n)$ steps, hence the time complexity of the algorithm is $O(\log n)$.
5. Work problem 2.22 in you textbook.

Mr. Singh, I have deleted my work on this problem. The basic idea is not very difficult to understand, but the details are a killer. Hopefully, I can finish those details soon.
6. If $f(n)$ is an increasing function, We say that f is polylogarithmic if $\log (f(n))=\Theta(\log \log n)$. We say that f is polynomial if $\log (f(n))=\Theta(\log n)$. We say that f is exponential if $\log (f(n))=\Theta(n)$.
It turns out that not every increasing function falls into one of those classes. Suppose F satisfies the recurrence:

$$
F(n)=F(n / 2)+F(n-1)+1
$$

It is obvious that $n<F(n)<2^{n}$, so F grows at least as fast as polynomial but no faster than exponential.
(a) Is F polylogarithmic? (Hint: No.)
(b) Is F polynomial? No. F grows faster than any polynomial function.
(c) Is F exponential? No. F grows slower than any exponential function.

Not every polynomial function (as defined above) is $\Theta\left(n^{K}\right)$ for some constant $K>1$, and not every exponential function (as defined above) is $\Theta\left(2^{C n}\right)$ for some constant $C>0$. However, these simplifications are "almost" true: more specifically, every polynomial function is both $O\left(n^{K_{1}}\right)$ and $\Omega\left(n^{K_{2}}\right)$ for constants $K_{1} \geq K_{2}>1$, while every exponential function is both $O\left(2^{C_{1} n}\right)$ and $\Omega\left(2^{C_{2} n}\right)$ for constants $C_{1} \geq C_{2}>0$.

We first note that $F(n) \geq F(n-1)+1$, hence F is monotone increasing. The formula that defines F works when you substitute any quantity for n, such as $n-1, n-2$, etc. Thus

$$
\begin{aligned}
F(n) & =F(n / 2)+F(n-1)+1 \\
F(n-1) & =F((n-1) / 2)+F(n-2)+1 \\
F(n-2) & =F((n-2) / 2)+F(n-3)+1
\end{aligned}
$$

and so forth. Substituting, we obtain

$$
F(n)=F(n / 2)+F((n-1) / 2)+F((n-2) / 2)+F(n-3)+3
$$

Repeated substitution yields, for any m

$$
F(n)=F(n / 2)+F((n-1) / 2)+\cdots+F((n-m+1) / 2)+F(n-m)+m
$$

Let $m=n / 2$ (assuming that is an integer)

$$
F(n)=F(n / 2)+F((n-1) / 2)+\cdots+F((n / 2+1) / 2)+F(n / 2)+n / 2
$$

Since F is monotone increasing, we have two inequalities

$$
\begin{aligned}
& F(n) \geq n F(n / 4) / 2+F(n / 2)+n / 2 \\
& F(n) \leq n F(n / 2) / 2+F(n / 2)+n / 2
\end{aligned}
$$

To make the problem easier to understand, We make the simplifying assumption that a polynomial function of n is of the form n^{K} for some constant K, and that an exponential function of n is of the form $2^{C n}$ for some constant C.
Suppose $F(n)=n^{K}$ for some constant K. Then

$$
\begin{aligned}
F(n) & \geq n F(n / 4) \\
n^{K} & \geq \frac{n^{K+1}}{4^{K}} \\
4^{K} & \geq n
\end{aligned}
$$

Constradiction, since 4^{K} is constant and n is arbitrarily large.
Suppose $F(n)=2^{C n}$ for some constant C. Then

$$
\begin{aligned}
2^{C n} \leq & 2^{C n / 2} n+2^{C n / 2}+n / 2 \\
& \text { divide both sides by } 2^{C n / 2} \\
2^{C n / 2} \leq & (n+1)+\frac{n}{2^{C n / 2-1}}
\end{aligned}
$$

Contradiction, since an exponential function grows faster than a polynomial function.

