University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019 Answers to Assignment 3: Due Wednesday September 11, 2019

- 1. Work Problem 2.4 on page 71 of your textbook. In each case, let n be the size of the original problem.
 - The time for algorithm A satisfies the reucurrence $T(n) = 5T(n/2) + \Theta(n)$. The solution to this recurrence is $T(n) = \Theta(n^{\log_2 5})$.
 - The time for algorithm B satisfies the reucurrence $T(n) = 2T(n-1) + \Theta(1)$. The solution to this recurrence is $T(n) = \Theta(2^n)$.
 - The time for algorithm C satisfies the reucurrence $T(n) = 9T(n/3) + \Theta(n^2)$. The solution to this recurrence is $T(n) = \Theta(n^2) \log n$, since $\log_3 9 = 2$.

Algorithm C is fastest, since $\log_2 5 > 2$.

- 2. The following problem is similar to problem 3.5 on page 71 of in your textbook. Solve the following recurrences. Give a Θ bound if possible; otherwise if an Ω or an O bound.
 - (a) $T(n) \leq 5T(n/5) + 1$. T(n) = O(n).
 - (b) T(n) = 5T(n/5) + n. $T(n) = \Theta(n \log n)$.
 - (c) $T(n) \ge 5T(n/5) + n^2$. $T(n) = \Omega(n^2)$.
 - (d) $T(n) = 25T(n/5) + n^2$. $T(n) = \Theta(n^2 \log n)$.
 - (e) $T(n) \le T(n-1) + n^4$. $T(n) = O(n^5).$
 - (f) T(n) = 3T(n-1) + 1. $T(n) = \Theta(3^n)$.
 - (g) $T(n) \ge T(\sqrt{n}) + 1$. Let $T(n) = F(\ell)$ where $\ell = \log n$. (The base of the logarithm doesn't matter.) $T(\sqrt{n}) = F(\log(\sqrt{n})) = F(\log n/2) = F(\ell/2)$. Rewriting the recurrence, we have $F(\ell) \ge F(\ell/2) + 1$, hence $T(n) = F(\ell) = \Omega(\log \ell) = \Omega(\log \log n)$.
- 3. Work problem 2.13(a,b) in your textbook.

 $B_n = 0$ if n is even, because a full binary tree must have an odd number of vertices.

(b) We have

 $\begin{array}{l} B_1 = 1. \\ B_3 = B_1 B_1 = 1 \\ B_5 = B_3 B_1 + B_1 B_3 = 2 \\ B_7 = B_5 B_1 + B_3 B_3 + B_1 B_5 = 5 \\ \text{In general } B_n = \sum_{i=1}^{n/2} B_{n-2i} B_{2i-1} \text{ for } n \text{ odd, } n \geq 3. \end{array}$ The *Catalan* numbers are 1, 1, 2, 5, 14, 42, ... and B_{2n+1} is the nth Catalan number

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

4. Work problem 2.16 in you textbook.

Let the array have indices starting with zero, as in C + + Our first phase sets lo = 0 and hi to be some integer such that A[hi] > x. We initialize hi = 1, and keep doubling i until A[hi] > x. Our loop invariant is that either A[i] = x for some $lo \le i \le hi$ or x is not an entry of the array.

The second phase is to use binary search to halve the size of the search inteveral at each step, until hi = lo+1. At this point, since the loop invariant still holds, either A[lo] = x or x is not in the array.

```
int lo = 0;
int hi = 1;
while(A[hi] <= x) hi = 2*hi;
while (lo+1 < hi)
{
    int mid = (lo+hi)/2;
    if(A[mid] <= x) lo = mid; // loop invariant is maintained
    else hi = mid; // loop invariant is maintained
    }
    if(A[lo] == x)
    cout << "A[" << lo << "] = " << x << endl;
else
    cout << x << " is not an entry in the array" << endl;</pre>
```

Each phase takes $O(\log n)$ steps, hence the time complexity of the algorithm is $O(\log n)$.

5. Work problem 2.22 in you textbook.

Mr. Singh, I have deleted my work on this problem. The basic idea is not very difficult to understand, but the details are a killer. Hopefully, I can finish those details soon.

6. If f(n) is an increasing function, We say that f is polylogarithmic if log(f(n)) = Θ(log log n). We say that f is polynomial if log(f(n)) = Θ(log n). We say that f is exponential if log(f(n)) = Θ(n). It turns out that not every increasing function falls into one of those classes. Suppose F satisfies the recurrence:

$$F(n) = F(n/2) + F(n-1) + 1$$

It is obvious that $n < F(n) < 2^n$, so F grows at least as fast as polynomial but no faster than exponential.

- (a) Is F polylogarithmic? (Hint: No.)
- (b) Is F polynomial? No. F grows faster than any polynomial function.
- (c) Is F exponential? No. F grows slower than any exponential function.

Not every polynomial function (as defined above) is $\Theta(n^K)$ for some constant K > 1, and not every exponential function (as defined above) is $\Theta(2^{Cn})$ for some constant C > 0. However, these simplifications are "almost" true: more specifically, every polynomial function is both $O(n^{K_1})$ and $\Omega(n^{K_2})$ for constants $K_1 \ge K_2 > 1$, while every exponential function is both $O(2^{C_1n})$ and $\Omega(2^{C_2n})$ for constants $C_1 \ge C_2 > 0$.

We first note that $F(n) \ge F(n-1) + 1$, hence F is monotone increasing. The formula that defines F works when you substitute any quantity for n, such as n-1, n-2, etc. Thus

$$F(n) = F(n/2) + F(n-1) + 1$$

$$F(n-1) = F((n-1)/2) + F(n-2) + 1$$

$$F(n-2) = F((n-2)/2) + F(n-3) + 1$$
and so forth. Substituting, we obtain
$$F(n) = F(n/2) + F((n-1)/2) + F((n-2)/2) + F(n-3) + 3$$
Repeated substitution yields, for any m
$$F(n) = F(n/2) + F((n-1)/2) + \dots + F((n-m+1)/2) + F(n-m) + m$$
Let $m = n/2$ (assuming that is an integer)
$$F(n) = F(n/2) + F((n-1)/2) + \dots + F((n/2+1)/2) + F(n/2) + n/2$$
Since F is monotone increasing, we have two inequalities

$$F(n) \ge nF(n/4)/2 + F(n/2) + n/2$$

$$F(n) \leq nF(n/2)/2 + F(n/2) + n/2$$

To make the problem easier to understand, We make the simplifying assumption that a polynomial function of n is of the form n^{K} for some constant K, and that an exponential function of n is of the form 2^{Cn} for some constant C.

Suppose $F(n) = n^K$ for some constant K. Then

$$\begin{array}{rcl} F(n) & \geq & nF(n/4) \\ n^{K} & \geq & \frac{n^{K+1}}{4^{K}} \\ 4^{K} & \geq & n \end{array}$$

Constradiction, since 4^K is constant and n is arbitrarily large.

Suppose $F(n) = 2^{Cn}$ for some constant C. Then

$$2^{Cn} \leq 2^{Cn/2}n + 2^{Cn/2} + n/2$$

divide both sides by $2^{Cn/2}$
 $2^{Cn/2} \leq (n+1) + \frac{n}{2^{Cn/2-1}}$

Contradiction, since an exponential function grows faster than a polynomial function.