University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019
Answers to Assignment 3: Due Wednesday September 11, 2019
1. Work Problem 2.4 on page 71 of your textbook. In each case, let n be the size of the original problem.
e The time for algorithm A satisfies the reucurrence T'(n) = 5T (n/2) + ©(n). The solution to this
recurrence is T(n) = ©(n!°&2%).

e The time for algorithm B satisfies the reucurrence T'(n) = 2T (n — 1) + ©(1). The solution to this

recurrence is T'(n) = ©(2").

e The time for algorithm C satisfies the reucurrence T'(n) = 97(n/3) + ©(n?). The solution to this

recurrence is T'(n) = ©(n?) log n, since logg 9 = 2.
Algorithm C is fastest, since log, 5 > 2.

2. The following problem is similar to problem 3.5 on page 71 of in your textbook. Solve the followring

recurrences. Give a © bound if possible; otherwise if an © or an O bound.

(a) T(n) <5T(n/5)+ 1.

=
2
I
S
2

=

=

2
i

5T (n/5) + n.
T(n) = O(nlogn).

(c) T(n) > 5T(n/5) +n? T(n) = Q(n?).
(d) T(n) =25T(n/5) +n? T(n) =O(n%logn).

(e) T(n) <T(n—1)+n*.

(g) T(n) >T(/n)+ 1. Let T(n) = F(£) where £ = logn. (The base of the logarithm doesn’t matter.)
T(y/n) = F(log(v/n)) = F(logn/2) = F(£/2). Rewriting the recurrence, we have F'(¢) > F(¢/2)+1,
hence T'(n) = F(¢) = Q(log£) = Q(loglogn).

3. Work problem 2.13(a,b) in your textbook.

N LKA,

B, = 0 if n is even, because a full binary tree must have an odd number of vertices.

(a) B3:17 B5 :2, and B7:5
B

3 5

(b) We have
By =1.
By = B,B; = 1
Bs = ByBy + By Bs = 2
B: — BB, + BsBs + B,Bs — 5
In general B, = Zfﬁ B,,_2;Boi_1 for n odd, n > 3.

The Catalan numbers are 1,1,2,5,14,42, ... and By, is the n** Catalan number

. - 1 (Zn)
n+1l\n

4. Work problem 2.16 in you textbook.

Let the array have indices starting with zero, as in C'+ + Our first phase sets 1o = 0 and hi to be some
integer such that A[hi] > x. We initialize hi = 1, and keep doubling i until A[hi] > x. Our loop

invariant is that either A[i] = x for some 1o <= i < hi or x is not an entry of the array.

The second phase is to use binary search to halve the size of the search inteveral at each step, until

hi = lo+1. At this point, since the loop invariant still holds, either A[1o] = x or x is not in the array.

int lo = 0;
int hi = 1;
while(A[hi] <= x) hi = 2x%hi;
while (lo+1 < hi)
{
int mid = (lo+hi)/2;
if (A[mid] <= x) lo = mid; // loop invariant is maintained
else hi = mid; // loop invariant is maintained
}
if(A[lo] == x)
cout << "A[" << lo << "] = " << x << endl;
else

cout << x << " is not an entry in the array" << endl;

Each phase takes O(logn) steps, hence the time complexity of the algorithm is O(logn).

5. Work problem 2.22 in you textbook.
Mr. Singh, I have deleted my work on this problem. The basic idea is not very difficult to
understand, but the details are a killer. Hopefully, I can finish those details soon.

6. If f(n) is an increasing function, We say that f is polylogarithmic if log(f(n)) = O(loglogn). We say
that f is polynomial if log(f(n)) = ©(logn). We say that f is exponential if log(f(n)) = ©(n).

It turns out that not every increasing function falls into one of those classes. Suppose F' satisfies the
recurrence:

Fn)=Fn/2)+ Fn—1)+1

It is obvious that n < F(n) < 2", so F grows at least as fast as polynomial but no faster than exponential.

(a) Is F polylogarithmic? (Hint: No.)
(b) Is F polynomial? No. F grows faster than any polynomial function.

(c) Is F exponential? No. F' grows slower than any exponential function.

Not every polynomial function (as defined above) is ©(n) for some constant K > 1, and not every ex-

ponential function (as defined above) is ©(2°™) for some constant C' > 0. However, these simplifications

are “almost” true: more specifically, every polynomial function is both O(n*1) and Q(n*?) for constants
K| > K, > 1, while every exponential function is both O(2¢1™) and Q(22") for constants C; > Co > 0.

We first note that F(n) > F(n — 1) + 1, hence F is monotone increasing. The formula that defines F'

works when you substitute any quantity for n, such as n — 1, n — 2, etc. Thus

Fn) = F(n/2)+Fn-1)+1
Fn—1) = F((n-1)/2)+F(n—-2)+1
Fn—-2) = F((n—2)/2)+F(n—-3)+1
and so forth. Substituting, we obtain
Fn) = Fn/2)+F(n—-1)/2)+F(n—2)/2)+ F(n—3)+3
Repeated substitution yields, for any m
Fn) = Fn/2)+F(n—-1)/2)+---+F(n—m+1)/2)+ F(n—m)+m
Let m = n/2 (assuming that is an integer)
Fn) = F(n/2)+F(n—-1)/2)+---+F((n/2+1)/2) + F(n/2) +n/2
Since F' is monotone increasing, we have two inequalities
F(n) > nF(n/4)/2+ F(n/2)+n/2
F(n) < nFn/2)/2+F(n/2)+n/2

To make the problem easier to understand, We make the simplifying assumption that a polynomial

function of n is of the form n* for some constant K, and that an exponential function of n is of the

form 2¢" for some constant C.

Suppose F(n) = n® for some constant K. Then

F(n) > nF(n/4)
K+1
K n
n > 1K
45 > n

Constradiction, since 4% is constant and n is arbitrarily large.

Suppose F(n) = 2°™ for some constant C. Then

20n < 90n/2 4 oCN/2 |y /9
divide both sides by 2¢7/2

Cn/2

Contradiction, since an exponential function grows faster than a polynomial function.

