
University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019

Answers to Assignment 3: Due Wednesday September 11, 2019

1. Work Problem 2.4 on page 71 of your textbook. In each case, let n be the size of the original problem.

• The time for algorithm A satisfies the reucurrence T (n) = 5T (n/2) + Θ(n). The solution to this

recurrence is T (n) = Θ
(

nlog
2
5
)

.

• The time for algorithm B satisfies the reucurrence T (n) = 2T (n − 1) + Θ(1). The solution to this

recurrence is T (n) = Θ(2n).

• The time for algorithm C satisfies the reucurrence T (n) = 9T (n/3) + Θ(n2). The solution to this

recurrence is T (n) = Θ
(

n2
)

log n, since log3 9 = 2.

Algorithm C is fastest, since log2 5 > 2.

2. The following problem is similar to problem 3.5 on page 71 of in your textbook. Solve the followring

recurrences. Give a Θ bound if possible; otherwise if an Ω or an O bound.

(a) T (n) ≤ 5T (n/5) + 1.

T (n) = O(n).

(b) T (n) = 5T (n/5) + n.

T (n) = Θ(n log n).

(c) T (n) ≥ 5T (n/5) + n2. T (n) = Ω(n2).

(d) T (n) = 25T (n/5) + n2. T (n) = Θ(n2 log n).

(e) T (n) ≤ T (n− 1) + n4 .

T (n) = O(n5).

(f) T (n) = 3T (n− 1) + 1.

T (n) = Θ(3n).

(g) T (n) ≥ T (
√
n) + 1. Let T (n) = F (ℓ) where ℓ = log n. (The base of the logarithm doesn’t matter.)

T (
√
n) = F (log(

√
n)) = F (log n/2) = F (ℓ/2). Rewriting the recurrence, we have F (ℓ) ≥ F (ℓ/2)+1,

hence T (n) = F (ℓ) = Ω(log ℓ) = Ω(log log n).

3. Work problem 2.13(a,b) in your textbook.

(a) B3 = 1, B5 = 2, and B7 = 5.

B
7

B5B3

Bn = 0 if n is even, because a full binary tree must have an odd number of vertices.



(b) We have

B1 = 1.

B3 = B1B1 = 1

B5 = B3B1 +B1B3 = 2

B7 = B5B1 +B3B3 +B1B5 = 5

In general Bn =
∑n/2

i=1 Bn−2iB2i−1 for n odd, n ≥ 3.

The Catalan numbers are 1, 1, 2, 5, 14, 42, . . . and B2n+1 is the nth Catalan number

Cn =
1

n+ 1

(

2n

n

)

4. Work problem 2.16 in you textbook.

Let the array have indices starting with zero, as in C++ Our first phase sets lo = 0 and hi to be some

integer such that A[hi] > x. We initialize hi = 1, and keep doubling i until A[hi] > x. Our loop

invariant is that either A[i] = x for some lo <= i < hi or x is not an entry of the array.

The second phase is to use binary search to halve the size of the search inteveral at each step, until

hi = lo+1. At this point, since the loop invariant still holds, either A[lo] = x or x is not in the array.

int lo = 0;

int hi = 1;

while(A[hi] <= x) hi = 2*hi;

while (lo+1 < hi)

{

int mid = (lo+hi)/2;

if(A[mid] <= x) lo = mid; // loop invariant is maintained

else hi = mid; // loop invariant is maintained

}

if(A[lo] == x)

cout << "A[" << lo << "] = " << x << endl;

else

cout << x << " is not an entry in the array" << endl;

Each phase takes O(log n) steps, hence the time complexity of the algorithm is O(log n).

5. Work problem 2.22 in you textbook.

Mr. Singh, I have deleted my work on this problem. The basic idea is not very difficult to

understand, but the details are a killer. Hopefully, I can finish those details soon.

6. If f(n) is an increasing function, We say that f is polylogarithmic if log(f(n)) = Θ(log log n). We say

that f is polynomial if log(f(n)) = Θ(log n). We say that f is exponential if log(f(n)) = Θ(n).

It turns out that not every increasing function falls into one of those classes. Suppose F satisfies the

recurrence:

F (n) = F (n/2) + F (n− 1) + 1

It is obvious that n < F (n) < 2n, so F grows at least as fast as polynomial but no faster than exponential.

2



(a) Is F polylogarithmic? (Hint: No.)

(b) Is F polynomial? No. F grows faster than any polynomial function.

(c) Is F exponential? No. F grows slower than any exponential function.

Not every polynomial function (as defined above) is Θ(nK) for some constant K > 1, and not every ex-

ponential function (as defined above) is Θ(2Cn) for some constant C > 0. However, these simplifications

are “almost” true: more specifically, every polynomial function is both O(nK1) and Ω(nK2) for constants

K1 ≥ K2 > 1, while every exponential function is both O(2C1n) and Ω(2C2n) for constants C1 ≥ C2 > 0.

We first note that F (n) ≥ F (n − 1) + 1, hence F is monotone increasing. The formula that defines F

works when you substitute any quantity for n, such as n− 1, n− 2, etc. Thus

F (n) = F (n/2) + F (n− 1) + 1

F (n− 1) = F ((n− 1)/2) + F (n− 2) + 1

F (n− 2) = F ((n− 2)/2) + F (n− 3) + 1

and so forth. Substituting, we obtain

F (n) = F (n/2) + F ((n− 1)/2) + F ((n− 2)/2) + F (n− 3) + 3

Repeated substitution yields, for any m

F (n) = F (n/2) + F ((n− 1)/2) + · · ·+ F ((n−m+ 1)/2) + F (n−m) +m

Let m = n/2 (assuming that is an integer)

F (n) = F (n/2) + F ((n− 1)/2) + · · ·+ F ((n/2 + 1)/2) + F (n/2) + n/2

Since F is monotone increasing, we have two inequalities

F (n) ≥ nF (n/4)/2 + F (n/2) + n/2

F (n) ≤ nF (n/2)/2 + F (n/2) + n/2

To make the problem easier to understand, We make the simplifying assumption that a polynomial

function of n is of the form nK for some constant K, and that an exponential function of n is of the

form 2Cn for some constant C.

Suppose F (n) = nK for some constant K. Then

F (n) ≥ nF (n/4)

nK ≥
nK+1

4K

4K ≥ n

Constradiction, since 4K is constant and n is arbitrarily large.

Suppose F (n) = 2Cn for some constant C. Then

2Cn ≤ 2Cn/2n+ 2Cn/2 + n/2

divide both sides by 2Cn/2

2Cn/2 ≤ (n+ 1) +
n

2Cn/2−1

Contradiction, since an exponential function grows faster than a polynomial function.

3


