University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019
Answers to Assignment 3: Due Wednesday September 11, 2019

1. Work Problem 2.4 on page 71 of your textbook. In each case, let \(n \) be the size of the original problem.

- The time for algorithm A satisfies the recurrence \(T(n) = 5T(n/2) + \Theta(n) \). The solution to this recurrence is \(T(n) = \Theta(n\log_2 5) \).
- The time for algorithm B satisfies the recurrence \(T(n) = 2T(n-1) + \Theta(1) \). The solution to this recurrence is \(T(n) = \Theta(2^n) \).
- The time for algorithm C satisfies the recurrence \(T(n) = 9T(n/3) + \Theta(n^2) \). The solution to this recurrence is \(T(n) = \Theta(n^2 \log n) \), since \(\log_3 9 = 2 \).

Algorithm C is fastest, since \(\log_2 5 > 2 \).

2. The following problem is similar to problem 3.5 on page 71 of in your textbook. Solve the following recurrences. Give a \(\Theta \) bound if possible; otherwise if an \(\Omega \) or an \(O \) bound.

(a) \(T(n) \leq 5T(n/5) + 1 \).
 \(T(n) = O(n) \).

(b) \(T(n) = 5T(n/5) + n \).
 \(T(n) = \Theta(n \log n) \).

(c) \(T(n) \geq 5T(n/5) + n^2 \). \(T(n) = \Omega(n^2) \).

(d) \(T(n) = 25T(n/5) + n^2 \). \(T(n) = \Theta(n^2 \log n) \).

(e) \(T(n) \leq T(n-1) + n^4 \).
 \(T(n) = O(n^5) \).

(f) \(T(n) = 3T(n-1) + 1 \).
 \(T(n) = \Theta(3^n) \).

(g) \(T(n) \geq T(\sqrt{n}) + 1 \). Let \(T(n) = F(\ell) \) where \(\ell = \log n \). (The base of the logarithm doesn’t matter.)
 \(T(\sqrt{n}) = F(\log(\sqrt{n})) = F(\log n/2) = F(\ell/2) \).
 Rewriting the recurrence, we have \(F(\ell) \geq F(\ell/2) + 1 \), hence \(T(n) = F(\ell) = \Omega(\log \ell) = \Omega(\log \log n) \).

3. Work problem 2.13(a,b) in your textbook.

(a) \(B_3 = 1, B_5 = 2, \) and \(B_7 = 5 \).

\[
\begin{array}{ccc}
\text{B}_3 & \text{B}_5 & \text{B}_7 \\
\wedge & \wedge & \wedge \\
\end{array}
\]

\(B_n = 0 \) if \(n \) is even, because a full binary tree must have an odd number of vertices.
(b) We have

\[B_1 = 1. \]
\[B_3 = B_1 B_2 = 1 \]
\[B_5 = B_3 B_1 + B_1 B_3 = 2 \]
\[B_7 = B_5 B_1 + B_3 B_3 + B_1 B_5 = 5 \]

In general, \[B_n = \sum_{i=1}^{\lfloor n/2 \rfloor} B_{n-2i} B_{2i-1} \] for \(n \) odd, \(n \geq 3 \).

The Catalan numbers are 1, 1, 2, 5, 14, 42, ... and \(B_{2n+1} \) is the \(n^{\text{th}} \) Catalan number

\[C_n = \frac{1}{n+1} \binom{2n}{n} \]

Let the array have indices starting with zero, as in C++. Our first phase sets \(\text{lo} = 0 \) and \(\text{hi} \) to be some integer such that \(A[\text{hi}] > x \). We initialize \(\text{hi} = 1 \), and keep doubling \(i \) until \(A[\text{hi}] > x \). Our loop invariant is that either \(A[i] = x \) for some \(\text{lo} \leq i < \text{hi} \) or \(x \) is not an entry of the array.

The second phase is to use binary search to halve the size of the search interval at each step, until \(\text{hi} = \text{lo} + 1 \). At this point, since the loop invariant still holds, either \(A[\text{lo}] = x \) or \(x \) is not in the array.

```cpp
int lo = 0;
int hi = 1;
while(A[hi] <= x) hi = 2*hi;
while (lo+1 < hi)
{
    int mid = (lo+hi)/2;
    if(A[mid] <= x) lo = mid; // loop invariant is maintained
    else hi = mid; // loop invariant is maintained
}
if(A[lo] == x)
    cout << "A[" << lo << "] = " << x << endl;
else
    cout << x << " is not an entry in the array" << endl;
```

Each phase takes \(O(\log n) \) steps, hence the time complexity of the algorithm is \(O(\log n) \).

5. Work problem 2.22 in your textbook.

Mr. Singh, I have deleted my work on this problem. The basic idea is not very difficult to understand, but the details are a killer. Hopefully, I can finish those details soon.

6. If \(f(n) \) is an increasing function, We say that \(f \) is polylogarithmic if \(\log(f(n)) = \Theta(\log \log n) \). We say that \(f \) is polynomial if \(\log(f(n)) = \Theta(\log n) \). We say that \(f \) is exponential if \(\log(f(n)) = \Theta(n) \).

It turns out that not every increasing function falls into one of those classes. Suppose \(F \) satisfies the recurrence:

\[F(n) = F(n/2) + F(n - 1) + 1 \]

It is obvious that \(n < F(n) < 2^n \), so \(F \) grows at least as fast as polynomial but no faster than exponential.
(a) Is F polylogarithmic? (Hint: No.)
(b) Is F polynomial? No. F grows faster than any polynomial function.
(c) Is F exponential? No. F grows slower than any exponential function.

Not every polynomial function (as defined above) is $\Theta(n^K)$ for some constant $K > 1$, and not every exponential function (as defined above) is $\Theta(2^{Cn})$ for some constant $C > 0$. However, these simplifications are “almost” true: more specifically, every polynomial function is both $O(n^{K_1})$ and $\Omega(n^{K_2})$ for constants $K_1 \geq K_2 > 1$, while every exponential function is both $O(2^{C_1n})$ and $\Omega(2^{C_2n})$ for constants $C_1 \geq C_2 > 0$.

We first note that $F(n) \geq F(n - 1) + 1$, hence F is monotone increasing. The formula that defines F works when you substitute any quantity for n, such as $n - 1$, $n - 2$, etc. Thus

\[
F(n) = F(n/2) + F(n - 1) + 1
\]
\[
F(n - 1) = F((n - 1)/2) + F(n - 2) + 1
\]
\[
F(n - 2) = F((n - 2)/2) + F(n - 3) + 1
\]

and so forth. Substituting, we obtain

\[
F(n) = F(n/2) + F((n - 1)/2) + F((n - 2)/2) + F(n - 3) + 3
\]

Repeated substitution yields, for any m

\[
F(n) = F(n/2) + F((n - 1)/2) + \cdots + F((n - m + 1)/2) + F(n - m) + m
\]

Let $m = n/2$ (assuming that is an integer)

\[
F(n) = F(n/2) + F((n - 1)/2) + \cdots + F((n/2 + 1)/2) + F(n/2) + n/2
\]

Since F is monotone increasing, we have two inequalities

\[
F(n) \geq nF(n/4)/2 + F(n/2) + n/2
\]
\[
F(n) \leq nF(n/2)/2 + F(n/2) + n/2
\]

To make the problem easier to understand, We make the simplifying assumption that a polynomial function of n is of the form n^K for some constant K, and that an exponential function of n is of the form 2^{Cn} for some constant C.

Suppose $F(n) = n^K$ for some constant K. Then

\[
F(n) \geq nF(n/4) \\
F(n) \geq n^{K+1} \\
4^K \geq n
\]

Contradiction, since 4^K is constant and n is arbitrarily large.

Suppose $F(n) = 2^{Cn}$ for some constant C. Then

\[
2^{Cn} \leq 2^{Cn/2}n + 2^{Cn/2} + n/2
\]

divide both sides by $2^{Cn/2}$

\[
2^{Cn/2} \leq (n + 1) + \frac{n}{2^{Cn/2 - 1}}
\]

Contradiction, since an exponential function grows faster than a polynomial function.