
University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019

Answers to Assignment 7 Due Monday November 4, 2019

Name:

1. Design a dynamic programming algorithm that inputs a sequence of integers, and finds that subsequence

which has the largest total, subject to the condition that no two consecutive terms of the original sequence

are in the subsequence. Identify the subproblems.

For example, if the input sequence is 3,1,4,1,5,9,2,6,5,3,5, your algorithm will find the subsequence

3,4,9,6,5, whose terms add up to 27.

We say that a subsequence is legal if no two terms of the subsequence are consecutive terms of the input

sequence.

Let x[1 . . . n] be the input sequence. There is one subproblem for each i ≤ n, namely to find the maximum

weight legal subsequenc which ends at x[i]. Let s[i] be the weight of that subsequence, and let b[i] be

the index of the next-to-the-last term in that subsequence, the backpointer. If the first term of the

subsequence is x[i], we let b[i] = 0. The table shows the values computed by the algorithm for the

example input sequence.

i 1 2 3 4 5 6 7 8 9 10 11

x[i] 3 1 4 1 5 9 2 6 5 3 5

s[i] 3 1 7 4 12 16 14 22 21 25 27

b[i] 0 0 1 1 3 3 5 6 6 8 8

s[1] = x[1];

b[1] = 0;

s[2] = x[2];

b[2] = 0;

s[3] = s[1]+x[3];

b[3] = 1;

for(int i = 4, i <= n, i++)

if(s[i-2]+x[i] > s[i-3]+x[i])

{

s[i] = s[i-2]+x[i];

b[i] = i-2;

}

else

{

s[i] = s[i-3]+x[i];

b[i] = i-3;

}

// now write the subsequence

int j = n;

while(j > 0)

{

write(x[j]);

j = b[j];

}



2. Work problem 5.11 on page 149 of your textbook. Your answer should consist of a sequence of pictures.

The actions are:

union(1,2) union(3,4) union(5,6) union(7,8) union(1,4)

union(6,7) union(7,8) union(1,4) union(4,5) find(1)

0 0 0 0 0 0 0 0

1 1 1 1

3

3

22

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Initially, each node is in a separate tree.

Execute the first four actions.

Execute the next two actions.

When union(4,5) is executed, the parent of 5

changes to 8 by path compression.

When find(1) is executed, the parent of 1

changes to 8 by path compression.

2



3. Work problem 6.1 on page 177 of your textbook.

The book says to find a linear time algorithm.

However, that is tricky. There is a simple O(n3)-

time algorithm, there is a not quite so sim-

ple O(n2)-time algorithm, a much more sophisti-

cated O(n log n)-time algorithm, and finally a re-

ally clever O(n)-time dynamic programming algo-

rithm. Do the best you can.

Let x[0], x[1], . . . x[n− 1] be the original sequence,

and let S[i, j] =
∑j

k=i x[k], the sum of the ith

through jth terms.

The “dumb” algorithm is to spend (n) time to

compute each S[i, j], and then to spend O(n2)

time to find the largest of these. The time com-

plexity of the dumb algorithm is Θ(n3).

int maxint(int a, int b)

{

if (a < b) return b;

else return a;

}

int S(int i, int j)

{

assert(i <= j);

int s = 0;

for(int k = 1; k <= j; k++)

s = s+x[k];

return s;

}

int rslt = 0; // the empty subsequence

// has total 0

for(int i = 0; i < n; i++)

for(int j = i; j < n; j++)

rslt = maxint(rslt,S(i,j));

cout << rslt << endl;

A slightly smarter algorithm makes use of the fact

that S[i, j + 1] = S[i, j] + x[j]. It is not actu-

ally necessary to save the values of S[i, j]; instead,

when each is computed, we compare it to the max-

imum we have found so far. The time complexity

is Θ(n2).

int maxint(int a, int b)

{

if (a < b) return b;

else return a;

}

int rslt = 0;

for(int i = 0; i < n; i++)

{int s = 0;

for(int j = i; j < n; j++)

{

s = s + x[j];

rslt = maxint(rslt,s);

}

}

cout << rslt << endl;

3



For the linear time dynamic programming algorithm, there

are 2n subproblems. Let A[k] = max {S[i, j] : i ≤ j ≤ k}

and B[k] = max {S[i, k] : i ≤ k}. Then A[0, n − 1] is the

result. We have:

B[0] = x[0]

A[0] = max {x[0], 0}

B[k] = x[k] + max {0, B[k − 1]}

A[k] = max {A[k − 1], B[k]}

Compute B[k], then A[k] for all k.

The time complexity is Θ(n).

int A[n];

int B[n];

B[0] = x[0];

A[0] = maxint(0,x[0]);

for(int k = 1; k < n; k++)

{

B[k] = x[k] + maxint(0,B[k-1]);

A[k] = maxint(A[k-1],B[k]);

}

cout << A[n-1] << endl;

4. Work problem 6.4 on page 178 of the textbook.

We say a substring is good if it can be subdivided into English

words. Our algorithm has three phases. During the first

phase, the Boolean array good is computed using dynamic

programming. good[i] means that s[1 . . . i] is good. The

computation of good[i] takes O(i) time. During the first

phase, the integer array back is also computed. back[i]

is defined if and only if good[i]; back[i] = j means that

s[1 . . . j] is obtained by deleting the last substring which is

an English word from s[1 . . . i]. The first phase takes Θ(n2)

time. During the second phase, the Boolean array break

is computed. starting with back[n], following the chain

of backpointers, break[i] if and only if i is a backpointer.

This phase takes O(n) time. During the third phase, the

string of words is written, provided good[i]. This phase

takes Θ(n) time. The time complexity of our algorithm is

Θ(n2). The worst case time complexity of any algorithm for

this problem is Ω(n2) since, in the worst case, dict must

be called for each of the
(

n

2

)

= Θ(n2) substrings. Thus,

our algorithm is optimal. We show the arrays constructed

with the 25 symbol string attackingothersisterrible. (I

found 17 English word substrings. Not all of them play a

role when the algorithm is executed.) The solution found by

the algorithm is attack in got hers is terrible.

a t t a c k i n g o h e r s i st t e r r i b l e

1 2 3 4 5 6 7 9 2521 22 23 2420191817161514131210

T T T T T TT T T T

0 0 2 2 15 14 20 17

F T FFFFFFFFF F

6

TF

8

8 10

T

11

118

TTTTTTF F F F F F F F F F F F F F F F F F

0

T

T

i

back

break

11

F

good

bool good[n+1]{true};

for(int i = 1; j <= n; i++)

{

good[i] = false;

for(int j = 0; j < i; j++)

if(good[j] and dict[j+1,i])

{

good[i] = true;

back[i] = j;

}

}

if(good[n])

{

bool break[n+1]{false};

int k = n;

while (k > 0)

{

k = back[k];

break[k] = true;

}

for(int i = 1; i <= n; i++)

{

cout << s[i];

if(break[i]) cout << " ";

}

}

else cout << "No solution";

cout << endl;

4



5. Work problem 6.11 on page 180 of your textbook. This is the LCS (longest common subsequence)

problem. To find the longest common subsequence of string x[1..m] and y[1..n], let z[i, j] be the length

of the longest common subsequence of the substrings x[1..i] and y[1..j]. We initialize z[i, 0] = z[0, j] for

all i and j. For i > 0 and j > 0, we have two cases. If x[i] 6= y[j], let z[i, j] = max {z[i− 1, j], z[i, j − 1]}.

If x[i] = y[j], let z[i, j] = 1 + z[i − 1, j − 1]. We now find LCS(abrahamlincoln,georgewashington).

To avoid losing track, we first create an array which indicates those (i, j) for which x[i] = y[j]. We then

compute the array z. The longest common substring is rahion.

g e o r g e w a s h i n g t o n

a x

b

r x

a x

h x

a x

m

l

i x

n x x

c

o x x

l

n x x

g e o r g e w a s h i n g t o n

a 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

b 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

r 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

a 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2

h 0 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3

a 0 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3

m 0 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3

l 0 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3

i 0 0 0 1 1 1 1 2 2 3 4 4 4 4 4 4

n 0 0 0 1 1 1 1 2 2 3 4 4 4 4 4 4

c 0 0 0 1 1 1 1 2 2 3 4 4 4 4 4 4

o 0 0 1 1 1 1 1 2 2 3 4 4 4 4 5 5

l 0 0 1 1 1 1 1 2 2 3 4 4 4 4 5 5

n 0 0 1 1 1 1 1 2 2 3 4 5 5 5 5 6

Who is the only person known to have personally met both George Washinton and Abraham Lincoln?

5



6. Work problem 6.20 on page 182 of your textbook. This is a well-known problem with an interesting

history. The “obvious” (but still tricky) dynamic programming algorithm, which involves finding optimal

binary search trees for each contiguous subsequence of the list, takes O(n3) time. In 1971, Donald

Knuth found an O(n2)-time algorithm for the problem. The algorithm was correct, but Knuth’s proof

of correctness was flawed.

“Experts” believe there should be a faster algorithm, but no one has found one.

Given an alphabetic list of n items, a1 < a2 < . . . < an where ak has weight wk, the weighted path

length of a binary search tree on those items is defined to be
∑n

i=k pk, where pk is 1 if ak is at the root

of the tree, 2 if ak is a child of the root, and so forth.

items is optimal if its weighted path length is as small as possible. Every subtree of an optimal binary

search tree is an optimal binary search tree. By bottom-up dynamic programming, we can compute the

minimum WPL of the subtree on each of the
(

n+1
n

)

contiguous sublists. The WPL of a subtree of one

item is 0. If 1 ≤ i ≤ j ≤ n, we define W [i, j] =
∑j

k=1 wk, the weight of the sublist ai . . . aj . We also

define W [i, i− 1] = 0.

Subtrees. Any subtree of an optimal binary search tree is an optimal binary search tree. Let T [i, j]

be the optimal binary search tree on the items ai . . . aj . We let T [i, i − 1] be the empty tree. and let

WPL[i, j] be the WPL of T [i, j], hence WPL[i, i− 1] = 0.

Dynamic Programming. There is one subproblem for each sublist, a total of n(n+1)
2 subproblems.

Trivially, WPL[i, i] = wi. The subproblems are worked in bottom-up order, that is, in order of the

length of the sublist. If i ≤ j, let ar be the item at the root of T [i, j]. Then WPL[i, j] = WPL[i, r− 1]+

WPL[r + 1, j] + W [i, j]. Thus, computation of WPL[i, j] depends on choosing the correct r. Since we

don’t know r in advance, we try all of them. Our program looks like this:

WPL[i, i− 1] = 0 for all i.

WPL[i, i] = wi for all i.

For i from n-1 downto 1

For j from i+1 to n

WPL[i, j] = W [i, j] + min {WPL[i, r − 1] +WPL[r + 1, j] : i ≤ r ≤ j}

Let r[i, j] be the value of r which is chosen.

Then WPL[1, n] is the weighted path length of T [1, n]. The shape of T [1, n] can be recovered by keeping

track of the r[i, j].

Knuth’s Speedup. In 1971, Knuth noticed that r[i, j − 1] ≤ r[i, j] ≤ r[i + 1, j] for all i < j, thus,

instead of spending linear time to search for r[i, j], we only need to search for values in the range

r[i, j − 1] . . . r[i+1, j]. This property is called monotonicity. The amortized time for each such search is

O(1), and thus the dynamic program can be executed in O(n2) time.1

1Knuth’s proof of monotonicity was several pages long, and so complex I could not understand it. I found out later that it

was wrong, anyway! However, now there is a relatively simple, and correct, proof of monotonicity.

6


