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Answers to Assignment 8 Due Monday November 18, 2019

1. (Cuckoo hash table problem.) We define two hash functions, h1 and h2, on 4-letter words as follows.

Define [letter] to be the place, from one to 26, of that letter in the Roman alphabet, that is:

[A] = 1, [B] = 2, ... [M] = 13 ... [Z] = 26.

Let h1(word) = ([first letter] ∗ 2 + [second letter] ∗ 4)%7

and h2(word) = (h1(word) + ([third letter] + [fourth letter] ∗ 5)%6 + 1)%7

For example, if the work is “John,” we have:

h1(John) = ([J] ∗ 2 + [O] ∗ 4)%7 = (10 ∗ 2 + 15 ∗ 4)%7 = 3

h2(John) = (h1(John) + ([H] + [N] ∗ 5)%6 + 1)%7 = (3 + (8 + 70)%6 + 1)%7 = 4

(a) Find a word such that h1 and h2 of that word are equal.

There is no such word. The two hash functions are designed so that they will never be equal.

(b) Enter the following 4-letter words into a cuckoo hash table of size 7, using the two hash functions

h1 and h2 defined above. Show the steps. That is, don’t erase ejected words, simply cross them

out.

h1 h2

Faye 2 5

Trip 0 6

Thom 2 5

Suzy 3 5

Bess 3 4

Leah 2 1

Ping 5 0

0 Trip Ping

1 Leah

2 Faye Thom Faye Leah Thom Faye

3 Suzy Bess Suzy

4 Bess

5 Faye Suzy Thom Faye Ping Thom

6 Trip

2. You are given 12 pennies, all of which are exactly the same weight, except for one “bad” penny, which

is either slightly too heavy or slightly too light. You have a balance scale; if you put pennies on each

side, the scales gives you one of three answers: the left side is heavier, the right side is heavier, or the

two sides have equal weight.

(a) Give an algorithm which deternies which penny is bad, and whether it is too heavy or too light,

using only three weighings.

There are 24 possible outcomes. Three weighings can, in theory, distinguish 33 = 27 outcomes, so

you should be able to do it, and in fact, you can. The first thing to do is to put k pennies on each

side, but what is k? There must be at most 9 outcomes after the first weighing. If k = 3 and the

scale balances, the bad penny is one of the 6 remaining, so there are 12 remaining outcomes. If

k = 5 and the scale does not balance, there are 10 remaining outcomes. So k can be neither 3 nor 5.

If k = 4 and the scale balances, there are 8 remaining outcomes, while if the scale does not balance,

there are also 8 remaining outcomes. Thus the correct first weighing is to put 4 on each side.

But what do you do next? The harder case is when the scales do not balance. Suppose the left side

goes down and the right side up. Then either one of the 4 “left” pennies is too heavy, or one of the

4 “right” pennies is too light. The other 4 pennies are known to be ”good.”



You put two “left” pennies and one “right” penny on the left, and put one “left” penny, one “right”

penny, and one “good” penny on the right. What then?
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Solution for Twelve Pennies

(b) Considier the same problem with 13 pennies. There are 26 possible outcomes, so you should be able

to do it in three weighings, but you can’t. Use information theory to prove that it’s impossible.

If you put 4 or fewer pennies on each side in the initial setup and it balances, there are still at least

10 possibilities. If you put 5 our more pennies on each side and it does not balance, there are still

at least 10 possibilites. With two remaining weighings, you can only distinguish 9 possibilities, so

the problem has no solution.

(c) Suppose there are 13 pennies, one of which is too heavy or too light, and you also have a 14th penny

which you know is good. Show how you can find the bad penny and determine whether it’s too

heavy or too light in three weighings.

Put 5 of the thirteen questionable pennies on one side, four on the other along with the good penny.
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3. It is rather easy to compute the maximum (or minimum, sum, or product) of a list of n numbers in

O(log n) time using n processors, by the “tournament” method. Can you show how to do it in O(log n)

time using
n

log n
processors?

Partition the list into sublists, each of size log n. Assign one processor to each sublist to find the (local)

maximum of that sublist, for a total of
n

log n
processors. Use those same processors to find the maximum

of all those local maxima in O(log n) time.

Problems 4 and 6 can also be worked with
n

log n
processors in O(log n) time.

4. A layered graph is a graph whose vertices are partitioned into consecutive layers, and where each edge

only connects adjacent layers. For example, the graph G given below is a weighted direected layered

graph, with nine layers.

(a) Use dynamic programming to work the single source shortest path problem for G, where S is the

source. Show minimum lengths and backpointers.
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Alternatively, back(6a) = 5b.

You know how to multiply matrices. For example:

(

2 −1

1 0

)(

1 2

0 −1

)

=

(

2 5

1 2

)

This is the usual kind of matrix multiplication, called “(+, ∗)” matrix multiplication, because each entry

in the product matrix is the sum (+) of products (∗). That is

2 ∗ 1 + (−1) ∗ 0 = 2 2 ∗ 2 + (−1) ∗ (−1) = 5

1 ∗ 1 + 0 ∗ 0 = 1 1 ∗ 2 + 0 ∗ (−1) = 2

But there is another very useful kind, called (min,+) matrix multiplication. Each entry of the product

matrix is the minimum of sums.1 For example:

(

2 −1

1 0

)(

1 2

0 −1

)

=

(

−1 1

0 −1

)

Since

min {2 + 1, (−1) + 0} = −1 min {2 + 2, (−1) + (−1)} = 1

min {1 + 1, 0 + 0} = 0 min {1 + 2, 0 + (−1)} = −1

1We can use any two operators, such as (max,+), provided the second operator distributes over the first operator
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Relating (min,+) Multipication to the Layered Graph Problem. We can define the initial

vector of our problem to be the vector of minimum costs to the 0th layer, namely Vec[0] = (0, 4). After

working the dynamic program, we know that Vec[1] = (6, 5).

Let M [0, 1] =

(

6 9

7 1

)

, the matrix representing the arcs from Layer 0 to Layer 1. Then Vec[0]M [0, 1] =

(0, 4)

(

6 9

7 1

)

= (6, 5) = Vec[1]. Similarly, Vec[0]M [0, 1]M [1, 2]M [2, 3]M [3, 4] = (13, 8) = Vec[4].

This formulation does not save any time. However, we can shortcut the computation by using n parallel

processors to compute the product M [0, i] = M [0, 1]M [1, 2] · · ·M [i − 1, i] for each i ≤ n, in O(log n)

time, where n = 8 in our example. Then V ec[0]M [0, i] = Vec[i] For example

M [0, 2] = M [1]M [2] =

(

6 9

7 1

)(

6 8

2 0

)

=

(

11 9

3 1

)

Vec[0]M [0, 2] = (0, 4)

(

11 9

3 1

)

= (11, 5) = Vec[2]

(b) Using the example layered graph G, Compute the following (min,+) matrix products. (We have

already computed M [0, 2].)

M [2, 4] = M [2, 3]M [3, 4] =

(

5 9

3 1

)(

6 8

7 2

)

=

(

11 11

8 3

)

M [4, 6] = M [4, 5]M [5, 6] =

(

7 8

9 7

)(

3 8

5 5

)

=

(

10 13

12 12

)

M [6, 8] = M [6, 7]M [7, 8] =

(

2 6

7 5

)(

3 8

9 3

)

=

(

5 9

10 8

)

M [0, 4] = M [0, 2]M [2, 4] =

(

11 9

3 1

)(

11 11

8 3

)

=

(

17 12

9 4

)

M [4, 8] = M [4, 6]M [6, 8] =

(

10 13

12 12

)(

5 9

10 8

)

=

(

15 19

17 20

)

M [0, 8] = M [0, 4]M [4, 8] =

(

17 12

9 4

)(

15 19

17 20

)

=

(

29 32

21 24

)

Vec[8] = Vec[0]M [0, 8] = (0, 4)

(

29 32

21 24

)

= (25, 28).

(c) For an instance of the problem of arbitrary size, can you compute Vec[i] for all i in O(log n) time

with n processors? (Hint: Yes.)

5. This is an “extra difficulty” problem. The Levenstein edit distance between two strings of lengths m and

n, respectively, can be found in O(nm) time using the dynamic program we went over in class. However,

filling out that huge matrix seems awfully wasteful if the edit distance is small.

Let h be the actual Levenstein distance between two words of lengths n and m. Use the A∗ algorithm

to find the edit of minimum Levenstein cost in O(n(h+ 1) log n) time.
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The standard dynamic program for finding the

distance between strings x and y of lengths

n and m, respectively is to construct D, an

(n+1)×(m+1) array of integers, whereD[i, j]

is the edit distance from the prefix x[0..i] to

the prefix y[0..j]. D[0, 0] is initialized to 0,

and D[n,m] contains the edit distance. The

entries are defined by

D[i, j] = min











D[i− 1, j] + 1

D[i, j − 1] + 1

D[i− 1, j − 1] + ǫ

where ǫ = 0 if the ith symbol of x equals the

jth symbol of y, 0 otherwise. Thus, finding

the edit distance is an instance of the single
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pair minpath problem, where there are (n+ 1)(m+ 1) vertices and 3nm+ n+m− 1 weighted arcs, as

shown in the figure, where we compute the edit distance from “harkut” to “haircut.” The minimum

path consists of the vertices with green numerals, and has length 2.

Using the A∗ Algorithm. It is a waste of computation time to fill in the entire matrix, since all the

important action takes place near the main diagonal. We can define a heuristic h[i, j] = |n−m− i+ j|.

Values of h are shown in red in the figure. That heuristic would be the value of D[i, j] if both x and y

were over a unary alphabet, and hence is guaranteed to be no greater than D[i, j]. Using this heuristic,

the A∗ algorithm computes the edit distance, which is 2, much faster, since it only computes values near

the main diagonal.

6. This is an “extra difficulty” problem. In the last homework, one problem was to design a dynamic

programming algorithm that inputs a sequence of integers, and finds that subsequence which has the

largest total, subject to the condition that no two consecutive terms of the original sequence are in the

subsequence. For example, if the input sequence is 3,1,4,1,5,9,2,6,5,3,5, your algorithm will find the

subsequence 3,4,9,6,5, whose terms add up to 27.

As we have shown in class, the problem can be worked in O(n) sequential time. The problem can be

reduced to the problem of finding the shortest path through a weighted layered directed graph, as in

problem 4 of this homework. We can find the best subsequence in O(log n) time using n processors.

Let x[1], . . . x[n] be the sequence. Let S[i] be the maximum sum of any legal subsequence which includes

the ith term of the sequence. For convenience, we write S[0] = 0. Recall the sequential algorithm:

S[0] = 0;

S[1] = x[1];

S[2] = x[2];

for(int i = 3; i <= n; i++)

S[i] = max(S[i-3]+x[i],S[i-2]+x[i});

rslt = max(S[n-1],S[n]);

cout << "The maximum total of any legal subsequence is " << rslt << endl;
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One layer of the graph contains those variables that the algorithm needs for later steps. Thus, a layer

contains up to three nodes. For example, one layer contains S[2], S[3], and S[4], since S[2] and S[3] are

used in the next step, and S[4] will be needed later.

0 1

1

3

47 123

1 7

7

4 12

124 16

16

16

14

14

14

22

22

22

21

21

25

25

27 27

S[1]

S[1]

S[2]

S[2]

S[4]S[3]

S[3]

S[3] S[4]

S[5] S[6]

S[6]

S[6]

S[7]

S[7]

S[8]

S[8]

S[8]

S[9]

S[9]

S[10]

S[10]

S[2] S[11] rslt

S[5]

S[7]S[4] S[5]Z

0 0 0 0 0 0 0

0 0 0 0 0 0 0 00

0

0
3

1

4 1

1

5

5

9

90 2

2 6

6 5

5 3

3 5

5

In the figure, Z has the value zero, and rslt is the result, the maximum length of a path starting at Z.

In the matrices which represent steps, since we are trying to maximize weights, we use −∞ for the weight

of an edge which does not appear in the figure.2 ( S[1] S[2] S[3] ) = ( 3 1 7 ), thus

( S[2] S[3] S[4] ) = ( 3 1 7 )







−∞ −∞ 1

0 −∞ 1

−∞ 0 −∞






= ( 1 7 4 )

Similarly, by multiplying ( S[1] S[2] S[3] ) by







−∞ −∞ 1

0 −∞ 1

−∞ 0 −∞













−∞ −∞ 5

0 −∞ 5

−∞ 0 −∞













−∞ −∞ 9

0 −∞ 9

−∞ 0 −∞













−∞ −∞ 2

0 −∞ 2

−∞ 0 −∞






=







−∞ 10 3

5 10 7

5 9 7







we obtain ( 12 16 14 ) = ( S[5] S[6] S[7] ).

Matrices on the left and right end of the computation can be smaller. The entire example computation

can be written out as the (max,+) product of 12 matrices of various shapes.

( 0 )( 3 1)

(

0 −∞ 4

−∞ 0 −∞

)

(

seven
3× 3

matrices

)







−∞ 5

−∞ 5

0 −∞







(

0

0

)

= ( 27 )

For an arbitrary input sequence of length n, the computation can be done by n parallel processors in

O(log n) time, since matrix multiplication is associative.

2As opposed to ∞, which is used when we are trying to minimize.
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