1. Solve each recurrence, expressing the answers using O, Ω, or Θ, whichever is most appropriate.

 (a) $F(n) = 4F(n/2) + n$
 $F(n) = \Theta(n^2)$

 (b) $F(n) = F(n/2) + \log n$ (Hint: use substitution.)
 $F(n) = \Theta(\log^2 n)$

 (c) $F(n) = F(n - 2) + \log n$ (Hint: do not be misled by irrelevancies.)
 $F(n) = \Theta(n \log n)$

 (d) $F(n) = F(n - \sqrt{n}) + n$ (Hint: divide by sides by something.)
 $F(n) = \Theta(n^{3/2})$

 (e) $F(n) = 3(F(n/3) + F(2n/3)) + n^2$
 $F(n) = \Theta(n^2)$

 (f) $F(n) = F(n/2) + F(n/3) + F(n/6) + 1$
 $F(n) = \Theta(n)$

2. Explain how to find the median of n items, deterministically, in $O(\log n)$ time using n processors. Can you do it with asymptotically fewer processors, but still in $O(\log n)$ time?

3. Consider a union/find problem where there are n items, and the total number of find operations is n and the total number of union operations is also n. Assume that you use path compression.

 (a) Is the time complexity $O(n)$? (Hint: No.)

 (b) What is the time complexity?
 $O(n \alpha(n))$, where α is the inverse Ackermann function.

4. $2n$ items are placed into an open hash table of size n, using a pseudo-random hash function.

 (a) What is the average number of items in a bucket? (Hint: 2.)
 2

 (b) Approximately how many buckets will have no items?
 n/e^2

 (c) Approximately how many buckets will have exactly one item?
 $2n/e^2$

 (d) We say that a two items collide if they have the same hash value. Approximately how many other items does a given item x collide with?
 2

More generally, if each of n items is assigned one of nm labels, the average number of items assigned to each label is m, and the expected proportion of labels which are assigned to exactly k items is $\frac{m^k}{e^{mk}}$.

5. You are given an acyclic directed graph $G = (V, E)$. Let $n = |V|$ and $m = |E|$.

(a) Write an algorithm which finds a topological ordering of V.

On page 90 of our textbook, it is stated that the post number obtained during DFS search is a topological order. This algorithm takes $O(n + m)$ time.

(b) Write an algorithm which finds the longest path in G.

Let Pred[v] be the set of predecessors of v, namely all u in V such that (u, v) in E.

\[
\text{for all } v \text{ in } V \text{ in topological order}
\]
\[
\text{if (Pred[v] is empty) } L(v) = 0;
\]
\[
\text{else}
\]
\[
\text{back[v] = that } u \text{ in Pred[v] with maximum } L[v];
\]
\[
L(v) = 1 + L[\text{back[v]}];
\]
\[
\text{Pick } t \text{ in } V \text{ such that } L[t] \text{ is maximum.}
\]
\[
\text{Follow back pointers from } t \text{ to find the maximum length path.}
\]

This algorithm takes $O(n + m)$ time.

(c) Write an algorithm which finds the transitive closure of G.

(d) Write an algorithm which finds the transitive reduction of G.

These problems are both a lot harder than you might think. Both can be solved $O(nm)$ time using algorithms explained on the Wikipedia page. We let Succ[v] be the set of all nodes u such that (v, u) is in E. The following algorithm computes the transitive closure of $G = (V, E)$.

\[
\text{for all } v \text{ in } V \text{ in reverse topological order}
\]
\[
\text{Use DFS to visit all nodes reachable from } v.
\]
\[
\text{For each node } u \text{ reachable from } v, \text{ insert the edge } (v, u) \text{ into } E.
\]

There are $O(n)$ iterations of the outer loop. For each of those, the DFS search takes $O(m)$ time. Thus the time is $O(nm)$.

The following code computes the transitive reduction of G.

\[
\text{for all } v \text{ in } V \text{ // in any order, however, reverse topological order seems best}
\]
\[
\{
\text{Let Succ[v] = \{u[1], u[2], ...\}}
\}
\[
\text{for all } u[i] \text{ in } U
\]
\[
\{
\text{Use DFS to visit all nodes reachable from } u[i].
\]
\[
\text{if (u[j] is reachable from } u[i] \text{ for some } j \neq i)
\]
\[
\text{delete } (v, u[j]) \text{ from } E
\]
\]

There are $O(n)$ iterations of the outer loop. For each of those, the DFS search takes $O(m)$ time. Thus the time is $O(nm)$.

2
6. You can only type 80 characters on a line. You are given a sequence of words, \(w_1, w_2, \ldots, w_n \) of various lengths, which do not fit into one line. You want to construct a paragraph, where each line is as long as possible without exceeding 80 characters. The last line can have any length. No word has length greater than 80, and there must be a space between any two consecutive words on a line. Design an algorithm for this problem. (There is a linear, that is, \(O(n) \), time algorithm.)

We compute the Boolean array value \(\text{break}[] \)

```java
numonline = length[1];
for(int i = 2; i<=n; i++)
{
    if(length[i]+numonline) <= 80)
    {
        newline[i] = false;
        numonline += length[i]+1;
    }
    else
    {
        newline[i] = true; // a new line begins with word[i]
        numonline = length[i];
    }
}
newline[1] = true;
```