University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019
 Answers to Assignment 9 Due Wednesday December 4, 2019

1. Solve each recurrence, expressing the answers using O, Ω, or Θ, whichever is most appropriate.
(a) $F(n)=4 F(n / 2)+n)$ $F(n)=\Theta\left(n^{2}\right)$
(b) $F(n)=F(n / 2)+\log n$ (Hint: use substitution.)
$F(n)=\Theta\left(\log ^{2} n\right)$
(c) $F(n)=F(n-2)+\log n$ (Hint: do not be misled by irrelevancies.) $F(n)=\Theta(n \log n)$
(d) $F(n)=F(n-\sqrt{n})+n$ (Hint: divide by sides by something.)
$F(n)=\Theta\left(n^{3 / 2}\right)$
(e) $F(n)=3(F(n / 3)+F(2 n / 3))+n^{2}$
$F(n)=\Theta\left(n^{2}\right)$
(f) $F(n)=F(n / 2)+F(n / 3)+F(n / 6)+1$
$F(n)=\Theta(n)$
2. Explain how to find the median of n items, deterministically, in $O(\log n)$ time using n processors. Can you do it with asymptotically fewer processors, but still in $O(\log n)$ time?
3. Consider a union/find problem where there are n items, and the total number of find operations is n and the total number of union operations is also n. Assume that you use path compression.
(a) Is the time complexity $O(n)$? (Hint: No.)
(b) What is the time complexity?
$O(n \alpha(n))$, where α is the inverse Ackermann function.
4. $2 n$ items are placed into an open hash table of size n, using a pseudo-random hash function.
(a) What is the average number of items in a bucket? (Hint: 2.)

2
(b) Approximately how many buckets will have no items?
n / e^{2}
(c) Approximately how many buckets will have exactly one item?
$2 n / e^{2}$
(d) We say that a two items collide if they have the same hash value. Approximately how many other items does a given item x collide with?
2
More generally, if each of n items is assigned one of $n m$ labels, the average number of items assigned to each label is m, and the expected proportion of labels which are assigned to exactly k items is $\frac{m^{k}}{e^{m} k!}$
5. You are given an acyclic directed graph $G=(V, E)$. Let $n=|V|$ and $m=|E|$.
(a) Write an algorithm which finds a topological ordering of V.

On page 90 of our textbook, it is stated that the post number obtained during DFS search is a topological order. This algorithm takes $O(n+m)$ time.
(b) Write an algorithm which finds the longest path in G.

Let Pred[v] be the set of predecessors of v, namely all u in V such that (u, v) in E.

```
for all v in V in topological order
    if (Pred[v] is empty) L(v) = 0;
    else
        {
        back[v] = that u in Pred[v] with maximum L[v];
        L}(v)=1 + L[back[v]]
        }
    Pick t in V such that L[t] is maximum.
    Follow back pointers from t to find the maximum length path.
```

This algorithm takes $O(n+m)$ time.
(c) Write an algorithm which finds the transitive closure of G.
(d) Write an algorithm which finds the transitive reduction of G.

These problems are both a lot harder than you might think. Both can be solved $O(n m)$ time using algorithms explained on the Wikipedia page. We let Succ[v] be the set of all nodes u such that (v, u) is in E . The following algorithm computes the transitive closure of $G=(\mathrm{V}, \mathrm{E})$.

```
for all v in V in reverse topological order
Use DFS to visit all nodes reachable from v.
For each node u reachable from v, insert the edge (v,u) into E.
```

There are $O(n)$ iterations of the outer loop. For each of those, the DFS search takes $O(m)$ time. Thus the time is $O(n m)$.
The following code computes the transitive reduction of G.

```
for all v in V // in any order, however, reverse topological order seems best
    {
        Let Succ[v) = {u[1], u[2] , ...}
        for all u[i] in U
            {
            Use DFS to visit all nodes reachable from u[i].
            if (u[j] is reachable from u[i] for some j != i)
            delete (v,u[j]) from E
        }
    }
```

There are $O(n)$ iterations of the outer loop. For each of those, the DFS search takes $O(m)$ time. Thus the time is $O(n m)$.
6. You can only type 80 characters on a line. You are given a sequence of words, $w_{1}, w_{2}, \ldots w_{n}$ of various lengths, which do not fit into one line. You want to construct a paragraph, where each line is as long as possible without exceeding 80 characters. The last line can have any length. No word has length greater than 80 , and there must be a space between any two consecutive words on a line. Design an algorithm for this problem. (There is a linear, that is, $O(n)$, time algorithm.)
We compute the Boolean array value break[]

```
numonline = length[1];
for(int i = 2; i<=n; i++)
    {
        if(length[i]+numonline) <= 80)
            {newline[i] = false;
            numonline += length[i]+1;
        else
            {newline[i] = true; // a new line begins with word[i]
            numonline = length[i];}
        }
    newline[1] = true;
```

