1. Work Problem 2.4 on page 71 of your textbook.

2. The following problem is similar to problem 3.5 on page 71 of your textbook. Solve the following recurrences. Give a Θ bound if possible; otherwise if an Ω or an O bound.

 (a) $T(n) \leq 5T(n/5) + 1$

 (b) $T(n) = 5T(n/5) + n$

 (c) $T(n) \geq 5T(n/5) + n^2$
(d) \(T(n) = 25T(n/5) + n^2 \)

(e) \(T(n) \leq T(n - 1) + n^4 \)

(f) \(T(n) = 3T(n - 1) + 1 \)

(g) \(T(n) \geq T(\sqrt{n}) + 1 \)
3. Work problem 2.13(a,b) in your textbook.

5. Work problem 2.22 in your textbook.
6. If $f(n)$ is an increasing function, we say that f is *polylogarithmic* if $\log(f(n)) = \Theta(\log \log n)$. We say that f is *polynomial* if $\log(f(n)) = \Theta(\log n)$. We say that f is *exponential* if $\log(f(n)) = \Theta(n)$.

It turns out that not every increasing function falls into one of those classes. Suppose F satisfies the recurrence:

$$F(n) = F(n/2) + F(n - 1) + 1$$

It is obvious that $n < F(n) < 2^n$, so R grows at least as fast as polynomial but no faster than exponential.

(a) Is F polylogarithmic? (Hint: No.)

(b) Is F polynomial?

(c) Is F exponential?