
University of Nevada, Las Vegas Las Vegas Computer Science 477/677 Fall 2019

Assignment 8 Due Monday November 18, 2019

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. But the

handwriting on this document must be your own. Print out the document, staple, and fill in the answers. You

may attach extra sheets, but only by stapling. Turn in the pages to the graduate assistant at the beginning

of class, November 4.

1. (Cuckoo hash table problem.) We define two hash functions, h1 and h2, on 4-letter words as follows.

Define [letter] to be the place, from one to 26, of that letter in the Roman alphabet, that is:

[A] = 1, [B] = 2, ... [M] = 13 ... [Z] = 26.

Let h1(word) = ([first letter] ∗ 2 + [second letter] ∗ 4)%7

and h2(word) = (h1(word) + ([third letter] + [fourth letter] ∗ 5)%6 + 1)%7

For example, if the work is “John,” we have:

h1(John) = ([J] ∗ 2 + [O] ∗ 4)%7 = (10 ∗ 2 + 15 ∗ 4)%7 = 3

h2(John) = (h1(John) + ([H] + [N] ∗ 5)%6 + 1)%7 = (3 + (8 + 70)%6 + 1)%7 = 4

(a) Find a word such that h1 and h2 of that word are equal.

(b) Enter the following 4-letter words into a cuckoo hash table of size 7, using the two hash functions

h1 and h2 defined above. Show the steps. That is, don’t erase ejected words, simply cross them

out.

Faye

Trip

Thom

Suzy

Bess

Leah

Ping



2. You are given 12 pennies, all of which are exactly the same weight, except for one “bad” penny, which

is either slightly too heavy or slightly too light. You have a balance scale; if you put pennies on each

side, the scales gives you one of three answers: the left side is heavier, the right side is heavier, or the

two sides have equal weight.

(a) Give an algorithm which deternies which penny is bad, and whether it is too heavy or too light,

using only three weighings.

There are 24 possible outcomes. Three weighings can, in theory, distinguish 33 = 27 outcomes, so

you should be able to do it, and in fact, you can. The first thing to do is to put k pennies on each

side, but what is k? There must be at most 9 outcomes after the first weighing. If k = 3 and the

scale balances, the bad penny is one of the 6 remaining, so there are 12 remaining outcomes. If

k = 5 and the scale does not balance, there are 10 remaining outcomes. So k can be neither 3 nor 5.

If k = 4 and the scale balances, there are 8 remaining outcomes, while if the scale does not balance,

there are also 8 remaining outcomes. Thus the correct first weighing is to put 4 on each side.

But what do you do next? The harder case is when the scales do not balance. Suppose the left side

goes down and the right side up. Then either one of the 4 ”left” pennies is too heavy, or one of the

4 ”right” pennies is too light. The other 4 pennies are known to be ”good.”

It took me three days to figure this out when I first worked the problem in 1953. You put two ”left”

pennies and one ”right” penny on the left, and put one ”left” penny, one ”right” penny, and one

”good” penny on the right. What then?

(b) Considier the same problem with 13 pennies. There are 26 possible outcomes, so you should be

able to do it in three weighings, but you can’t. Use information theory to prove that it’s impossible.

(Hint: What is the number of remaining possibilities after the first weighing?)

(c) Suppose there are 13 pennies, one of which is too heavy or too light, and you also have a 14th penny

which you know is good. Show how you can find the bad penny and determine whether it’s too

heavy or too light in three weighings.

Use extra paper for this problem, and staple that paper to your homework.
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3. It is rather easy to compute the maximum (or minimum, or sum) of a list of n numbers in O(log n) time

using n processors, by the “tournament” method. Can you show how to do it in O(log n) time using
n

log n
processors?

Problems 4 and 6 can also be worked with
n

log n
processors in O(log n) time.
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4. A layered graph is a graph whose vertices are partitioned into consecutive layers, and where each edge

only connects adjacent layers. For example, the graph G given below is a weighted direected layered

graph, with nine layers.
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(a) Use dynamic programming to work the single source shortest path problem for G, where S is the

source. Show minimum lengths and backpointers.
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You know how to multiply matrices. For example:

(

2 −1

1 0

)(

1 2

0 −1

)

=

(

2 5

1 2

)

This is the

usual kind of matrix multiplication, called “(+, ∗)” matrix multiplication, because each entry in the

product matrix is the sum (+) of products (∗). That is

2 ∗ 1 + (−1) ∗ 0 = 2 2 ∗ 2 + (−1) ∗ (−1) = 5

1 ∗ 1 + 0 ∗ 0 = 1 1 ∗ 2 + 0 ∗ (−1) = 2

But there is another very useful kind, called (min,+) matrix multiplication. Each entry of the product

matrix is the minimum of sums.1 For example:

(

2 −1

1 0

)(

1 2

0 −1

)

=

(

−1 1

0 −1

)

Since

min {2 + 1, (−1) + 0} = −1 min {2 + 2, (−1) + (−1)} = 1

min {1 + 1, 0 + 0} = 0 min {1 + 2, 0 + (−1)} = −1

Relating (min,+) Multipication to the Layered Graph Problem. We can define the initial

vector of our problem to be the vector of minimum costs to the 0th layer, namely Vec[0] = (0, 4). After

working the dynamic program, we know that Vec[1] = (6, 5).

Let M [0, 1] =

(

6 9

7 1

)

, the matrix representing the arcs from Layer 0 to Layer 1. Then Vec[0]M [0, 1] =

(0, 4)

(

6 9

7 1

)

= (6, 5) = Vec[1]. Similarly, Vec[0]M [0, 1]M [1, 2]M [2, 3]M [3, 4] = (13, 8) = Vec[4].

This formulation does not save any time. However, we can shortcut the computation by using n parallel

processors to compute the product M [0, i] = M [0, 1]M [1, 2] · · ·M [i − 1, i] for each i ≤ n, in O(log n)

time, where n = 8 in our example. Then V ec[0]M [0, i] = Vec[i] For example

M [0, 2] = M [1]M [2] =

(

6 9

7 1

)(

6 8

2 0

)

=

(

11 9

3 1

)

Vec[0]M [0, 2] = (0, 4)

(

11 9

3 1

)

= (7, 5) = Vec[2]

(b) Using the example layered graph G, Compute the following (min,+) matrix products. (We have

already computed M [0, 2].)

M [2, 4] = M [2, 3]M [3, 4]

M [4, 6] = M [4, 5]M [5, 6]

M [6, 8] = M [6, 7]M [7, 8]

M [0, 4] = M [0, 2]M [2, 4]

M [4, 8] = M [4, 6]M [7, 8]

M [0, 8] = M [0, 4]M [4, 8]

Finally, compute Vec[0]M [0, 8] = Vec[8].

(c) For an instance of the problem of arbitrary size, can you compute Vec[i] for all i in O(log n) time

with n processors? (Hint: Yes.)

1We can use any two operators, provided the second operator distributes over the first operator.
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5. This is an “extra difficulty” problem. The Levenstein edit distance between two strings of lengths m and

n, respectively, can be found in O(nm) time using the dynamic program we went over in class. However,

filling out that huge matrix seems awfully wasteful if the edit distance is small.

Let h be the actual Levenstein distance between two words of lengths n and m. Use the A∗ algorithm

to find the edit of minimum Levenstein cost in O(n(h+ 1) log n) time.
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6. This is an “extra difficulty” problem. In the last homework, one problem was to design a dynamic

programming algorithm that inputs a sequence of integers, and finds that subsequence which has the

largest total, subject to the condition that no two consecutive terms of the original sequence are in the

subsequence. For example, if the input sequence is 3,1,4,1,5,9,2,6,5,3,5, your algorithm will find the

subsequence 3,4,9,6,5, whose terms add up to 27.

As we have shown in class, the problem can be worked in O(n) sequential time. The problem can be

reduced to the problem of finding the shortest path through a weighted layered directed graph, as in

problem 4 of this homework, but each layer has three nodes; using the method given in that problem,

we can find the best subsequence in O(log n) time using n processors.

The reduction is not easy to find, but once it’s found, it’s easy to understand.
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