Strong Components of a Directed Graph

Our textbook, Algorithms by Dasgupta, Papadimitriou, and Vazirani, contains what I believe is an important error on page 94, in the description of the algorithm for finding the strong components of a directed graph G. I believe it should read:

1. Run depth-first search on G^{R}, creating a list of the vertices in order of their post numbers.
2. Run depth first search on G, processing the vertices in decreasing order of their post numbers from Phase 1.
3. The depth first search in Phase 2 consists of phases. A phase ends when there is no unvisited out-neighbor of the current vertex. The vertices visited during each phase constitute one strong component.

You can reverse these; use G in Phase 1 and G^{R} in step 2. The strong components are exactly the same, but created in a different order.

An Example

We will step through the algorithm for a directed graph G of twelve vertices shown below. We use lower case letters a \ldots l for the names of the vertices.

The reverse graph G^{R} :

We now execute Phase 1 of the algorithm. Each vertex is labeled with its pre amd post numbers.

At each postvisit, we append the name of the vertex to a list. The list of vertices in order of their Phase 1 post number is $\mathrm{g}, \mathrm{f}, \mathrm{e}, \mathrm{c}, \mathrm{d}, \mathrm{b}, \mathrm{a}, \mathrm{k}, \mathrm{j}, \mathrm{i}, \mathrm{l}, \mathrm{h}$.

We now execute Phase 2, processing vertices in the reverse order of our list. (We do not actually use the Phase 2 pre and post numbers, shown just to aid comprehension.)

We show the stack at each step of Phase 2, where $\$$ indicates the bottom of the stack. A component is defined whenever the stack becomes empty, after which explore begins at the unvisited vertex with the largest Phase 1 post number. Strong components are indicated in the figure.

\$		\$ad	
\$h		\$adb	
\$hk		\$ad	
\$hk		\$a	
\$hkj		\$	$\{\mathrm{a}, \mathrm{d}, \mathrm{b}\}$ is a strong component
\$hkji		\$c	
\$hkj		\$cg	
\$hk		\$cgf	
\$h		\$cgfe	
\$	$\{\mathrm{h}, \mathrm{k}, \mathrm{j}, \mathrm{i}\}$ is a strong component	\$cgf	
\$1		\$cg	
\$	$\{1\}$ is a strong component	\$c	
\$a		+	$\{\mathrm{c}, \mathrm{g}, \mathrm{f}, \mathrm{e}\}$ is a strong component

