Analysis of Algorithms Assessment Test December 4, 2020 $_{\rm Total~50~points}$

1.	[4 points] True or False:
	When we say that a problem is in the class NP, we mean that it cannot be worked in polynomial time.
	There are cases where bubblesort is the fastest sorting method for that situation.
2.	[10 points] Which of the following answers best describes the running time of each of the following code fragments: $O(logn), O(n), O(nlogn), O(n^2),$
	for (i=1,i <n,i++) (j="i," <<="" cout="" endl;<="" for="" hello="" j<i,j++)="" th="" world=""></n,i++)>
	for (i = 1,i <n,i=2*i) (j="1," <<="" cout="" endl;<="" for="" hello="" j++)="" j<i,="" td="" world=""></n,i=2*i)>
3.	[10 points] Fill in the blanks: and are examples of divide-and-conquer sorting algorithms.
4.	[5 points] In the decision tree model of compostion, no algorithm which sorts n items can have fewer than comparisons in the worst case.
5.	[5 points] When an item is deleted from a stack, it is always the most recently inserted item. On the other hand, when an item is deleted from a queue, it is always which is deleted
6.	$[5 \ points]$ There are several techniques for balancing binary search trees. If T is a balanced binary search tree, the time it takes to execute a "find" in T is (Give an asymptotic answer.)
7.	[6 points] Suppose $F(n) = 2F(n/2) + 5n$. Then $F(n) =$ (Give an asymptotic answer.)
8.	[5 points] There is a programming technique called which consists of solving subproblems of increasing complexity, where each subproblem can be solved using the solutions to previously solved subproblems.