University of Nevada, Las Vegas Computer Science 477/677 Fall 2020 Assignment 1: Due Monday August 31, 2020

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. Your answers must be written in a pdf file and emailed to the graudate assistant, Tandreana Chua chuat4@unlv.nevada.edu, by midnight August 31. Your file must not exceed 5 megabytes, and must print out to at most 4 pages.

- 1. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω . Θ in the blank.
 - (a) $n 100 = \dots (n 200)$
 - (b) $n^{1/2} = \dots (n^{2/3})$
 - (c) $100n + \log n = \dots (n + \log^2 n)$
 - (d) $n \log n = \dots (10n + \log(10n))$
 - (e) $\log(2n) = \dots (\log(3n))$
 - (f) $10 \log n = \dots (\log(n^2))$
 - (g) $n^{1.01} = \dots (n \log^2 n)$
 - (h) $n^2 / \log n = \dots (n \log^2 n)$
 - (i) $n^{0.1} = \dots (\log^2 n)$
 - (j) $(logn)^{\log n} = \dots (n/\log n)$
 - (k) $\sqrt{n} = \dots (\log^3 n)$
 - (l) $n^{1/2} = \dots (5^{\log_2 n})$
 - (m) $n2^n = \dots (3^n)$
 - (n) $2^n = \dots (2^{n+1})$
 - (o) $n! = \dots (2^n)$
 - (p) $\log n^{\log n} = \dots (2^{(\log_2 n)^2})$
 - (q) $\sum_{i=1}^{n} i^k = \dots (n^{k+1})$

2. Work problem 0.3(c) on page 9 of the textbook.

```
3. Consider the following C++ program.
```

```
void process(int n)
{
  cout << n << endl;</pre>
  if(n > 1) process(n/2);
  cout << n%2;
}
int main()
{
  int n;
  cout << "Enter a positive integer: ";</pre>
  cin >> n;
  assert(n > 0);
  process(n);
  cout << endl;</pre>
  return 1;
}
```

The last line of the output of process(n) is a string of bits. What does this bitstring represent?

4. The recursive algorithm implemented below as a C++ function is used as a subroutine during the calculation of the level payment of an amortized loan. What does it compute?

```
float squre(float x)
{
  return x*x;
}
float mystery(float x, int k)
{
  if (k == 0) return 1.0;
  else if(x == 0.0) return 0.0;
  else if (k < 0) return 1/mystery(x,-k);
  else if (k%2) return x*mystery(x,k-1);
  else return mystery(squre(x),k/2);
}</pre>
```