
University of Nevada, Las Vegas Computer Science 477/677 Fall 2020

Answers to Assignment 3: Due Monday September 14, 2020

Name:

Write your answers into a pdf file and email it to the graduate assistent, Miss Chua, on Monday, September

14, before midnight.

1. Work problem 2.4 in your textbook. Suppose you are choosing between the following three algorithms:

• Algorithm A solves problems by dividing them into five subproblems of half the size, recursively

solving each subproblem, and then combining the solutions in constant time.

The recurrence is T (n) = 5T (n/2) + 1

T (n) = Θ(nlog
2
5) = Θ(5log2

n) by the master theorem.

• Algorithm B solves problems of size n by recursively solving two subproblems of size n−1 and then

combining the solutions in constant time.

The recurrence is T (n) = 2T (n− 1) + 1

Let m = 2n, then m/2 = 2n−1, and define G(m) = T (n) = T (log2 m).

G(m/2) = T (log2(m/2)) = T (log2 m− 1) = T (n− 1).

Substituting in the recurrence, we have G(m) = 2G(m/2) + 1

G(m) = Θ(m) by the master theorem. hence

T (n) = Θ(2n)

• Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3, recursively

solving each subproblem, and then combining the solutions in O(n2) time.

The recurrence is T (n) = 9T (n/3) + n2.

T (n) = Θ(n2 log n) by the master theorem.

What are the running times of each of these algorithms (in O notation), and which would you choose?

C. B is exponential, and log2 5 > 2. The log factor doesn’t count if the exponents of n are different.

2. Work problem 2.5 in your texctbook. Do not replace any transcendental constant with a decimal. For

example “log2 3” should be left as is, but “log2 4” should be written as 2.

Parts (a) through (f) are solved using the master theorem. Note that xlogyz = zlogy
x

(a) T (n) = 2T (n/3) + 1

T (n) = Θ(nlog
3
2) = Θ(2log3

n)

(b) T (n) = 5T (n/4) + n

T (n) = Θ(nlog
4
5) = Θ(5log4

n)

(c) T (n) = 7T (n/7) + n

T (n) = Θ(n log n)

(d) T (n) = 9T (n/3) + n2

T (n) = Θ(n2 log n)

(e) T (n) = 8T (n/2) + n3

T (n) = Θ(n3 log n)



(f) T (n) = 49T (n/25) + n3/2 log n

T (n) = Θ(n3/2 log n) because 253/2 = 125 > 49 The factor of log n is just carried along.

(g) T (n) = T (n− 1) + 2

T (n) = Θ(2n) = Θ(n) by the anti-derivative method.

(h) T (n) = T (n− 1) + nc where c ≥ 1 is a constant.

T (n) = Θ(nc+1) by the anti-derivative method.

(i) T (n) = T (n− 1) + cn where c > 1 is a constant.

T (n) = Θ

(

cn

ln c

)

= Θ(cn) by the anti-derivative method.

(j) T (n) = 2T (n− 1) + 1

T (n) = Θ(2n), just as for algorithm B in the first problem.

(k) T (n) = T (
√
n) + 1 Use substitution: m = log2 n.

LetG(m) = G(log2 n) = T (n). G(m/2) = G

(

log2 n

2

)

= G(log2
√
n) = T (

√
n)

G(m) = T (n) = T (
√
n) + 1 = G(m/2) + 1

By the master theorem T (n) = G(m) = Θ(logm) = Θ(log log n)

3. Work problem 2.12 in your textbook. How many lines, as a function of n, does the following program

print? Write a recurrence and solve it. You may assume n is a power of 2.

function f(n)

if n > 1:

print_line(’’still going’’)

f(n/2)

f(n/2)

Let L(n) be the number of lines printed when r(n) executes. The recurrence is then L(n) = 2L(n/2)+1.

By the master theorem, L(n) = Θ(n).

However, we want an exact solution. For that, we use the same recurrence, but with the boundary

condition L(1) = 0. By induction, we can then prove that L(n) = n− 1 if n is a power of 2.

4. Walk through the steps of mergesort for the input file L B G S M K U J

Sort pairs:

BL GS KM JU

Merge blocks in pairs:

BGLS JKMU

Merge blocks in pairs:

BGJKLMSU

There is now only one block, Which is the sorted list.

5. Walk through the steps of polyphase mergesort for the input file LBGSMKUJ

I will show you the steps of external polyphase mergeort for that example. The memory need hold at

most four items at any time. At most four files need be opened simultaneously. A new write file can be

opened. A write file can be closed and then reopened as a read file. The algorithm is allowed to read

2



only the first item in the file, but cannot “peek” at it without reading it. The algorithm can query the

file to determine whether it is empty. nitially, all items are on one file, and at the end, the items are

sorted on one file.

File 0: LBGSMKUJ

File 0 is read only, files 1 and 2 are open for writing.

First step of Phase 1: write the first run of file 0 to file 1

File 0: BGSMKUJ

File 1: L

File 2: (empty)

next step: write the first run of file 0 to file 2

File 0: MKUJ

File 1: L

File 2: BGS

next step: write the first run of file 0 to file 1

File 0: KUJ

File 1: LM

File 2: BGS

next step: write the first run of file 0 to file 2

File 0: J

File 1: LMKU

File 2: BGS

next step: write the first run of file 0 to file 1

File 0: (empty)

File 1: LMKU

File 2: BGSJ

Phase 1 ends because file 0 is empty.

Files 1 and 2 become read files. New write files 3 and 4 are opened.

First step of Phase 2: merge the first runs of files 1 and 2, write to file 3

File 1: KU

File 2: J

File 3: BGLMS

File 4: (empty)

next step: merge the first runs of files 1 and 2, write to file 4

File 1: (empty)

File 2: (empty)

File 3: BGLMS

File 4: JKU

Phase 2 ends becaus file 1 and 2 are empty.

Open files 3 and 4 for reading, files 1 and 2 for writing.

First step of phase 3: merge the first runs of files 3 and 4, write to file 1

File 1: BGJKLMSU

File 2: (empty)

File 3: (empty)

File 4: (empty)

3



Phase 3 ends because files 3 and 4 are empty.

Algorithm ends because there are 3 empty files. The remaining file has the sorted list.

6. What does the following program do? What is the loop invariant of its main loop?

int f(int n)

{

assert(n >= 0);

int m = n;

int d = 0;

while(m > 0)

{

m = m-1;

d = d+2;

}

return d;

}

If we don’t see it, we can run the program for various values of n. We will then see that the function

always returns 2n.

Note that during each iteration of the loop, m decreases by 1 and d increases by 2. 2m + d decreases

by 2 and increases by 2 during each iteration, and thus has same value and the end of each iteration as

at the beginning of that iteration. What is that value? Well . . . before the first iteration 2m+d = 2m =

2n. Since 2m+d is not changed by an iteration, 2m+d = 2n at the beginning and end of each iteration,

and is also true before the first iteration. Thus, 2m+d = 2n is the loop invariant.

We can use the loop invariant to prove correctness, namely that an input of n gives an output of 2n.

Proof: After the last itermation, m = 0, the output is d = 2m+d = 2n.

4


