
University of Nevada, Las Vegas Computer Science 477/677 Fall 2020

Assignment 5: Due Thursday October 1, 2020

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. Your answers

must be written in a pdf file and emailed to the graudate assistant, Tandreana Chua chuat4@unlv.nevada.edu

, by midnight October 1. Your file must not exceed 5 megabytes, and must print out to at most 4 pages.

All answers to the first two questions will be found in the following list of functions:
√

n, n
√

n, n, n2, n3,

n4, log n, log log n, log2 n, n log n, n2 log n.

1. Give an asymptotoic time complexity to each of these code fragments. The answer should be expressed

using Θ notation, except for (1j).

Instead of just guessing, or asking for the answer from someone, first make a serious effort to solve them

yourself using the techniques I’ve shown you. In some cases, it might help to actually implement the

code. Here is a suggestion on how you could do that.

cout << "Enter a positive integer: ";

cin >> n;

cout << endl;

int kount = 0;

for(int i = 0; i < n; i++)

{

kount++;

}

cout << "for n = " << n << " kount = " << kount << endl;

(a) for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++)

(b) for(int i = 1; i < n; i = 2*i)

(c) for(int i = 1; i < n; i++)

for(int j = n; j > 0; j = j/2)

(d) for(int i = 0; i < n; i++)

for(j = i; j > 1; j = j/2)

(e) for(int i = 0; i < n; i++)

for(j = n; j > i; j = j/2)

(f) for(int i = n; i > 0; i = i/2)

for(int j = i; j > 0; j = j/2)

(g) for(int i = 0; i < n; i++)

for(int j = 0; j < i*i; j++)

if(j%n == 0)

for(int k = 0; k < j; k++)



(h) for(int i = 2; i < n; i = i*i)

(i) for(int i = 0; i < n; i++)

for(int j = 2; j*j < i; j++)

(j) The next problem cannot be given an answer using Θ. There are two answers you must give; an

upper bound using O notation, and a lower bound using Ω notation. The two functions are different.

for(int i = 2; i < n; i = i*i)

for(int j = 0; j < i; j++)

2. For each of these recursive functions, let T(n) be the time complexity of the function with input n. In

each case, write a recurrence for T(n), and then solve that recurrence.

(k) void f(int n)

{

if(n > 0)

{

for(int i = 1; i < n; i++)

for(int j = 1; j < n; j++)

cout << "hello!" << endl

f(n/2); f(n/2);

}

}

(l) void g(int n)

{

if(n > 0)

{

for(int i = 1; i < n; i++)

for(int j = 1; j < n; j++)

cout << "hello!" << endl

g(n/2); g(n/2); g(n/2); g(n/2);

}

}

(m) void h(int n)

{

if(n > 0)

{

for(int i = 1; i < n; i++)

for(int j = 1; j < n; j++)

cout << "hello!" << endl

h(n/2); h(n/2); h(n/2); h(n/2); h(n/2); h(n/2); h(n/2); h(n/2);

}

}

2



3. Walk through heapsort, using the method shown in class, for the array: A Q R B X S M L N T

4. Walk through Kruskal’s algorithm for a minimum spanning tree of the following weighted graph, showing

the steps of union/find, and using path compression.

A D C M

H

B

I
K 

F

L
N

J
EG

1

2
1

4

45
6 8

6

7 8

7 9

87
1

7

9

2
8

3

3

6

3


