University of Nevada, Las Vegas Computer Science 477/677 Fall 2020
 Assignment 7: Due Monday November 9, 2020

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. Your answers must be written in a pdf file and emailed to the graudate assistant, Tandreana Chua chuat4@unlv.nevada.edu , by midnight November 5. Your file must not exceed 10 megabytes, and must print out to at most 8 pages.

Unless otherwise specified, n refers to the number of vertices and m refers to the number of edges of a graph or directed graph.

1. Give an algorithm for converting the array of outneighbor lists of a weighted directed graph into the array of inneighbor lists of the same graph in $O(n+m)$ time.
2. 8 items need to be inserted into a cuckoo hash table of size 8 . Insert the items in the order listed below. After each item, there are two hash values.

Ann	0	5
Bob	5	2
Cal	2	4
Dan	4	0
Eve	3	6
Fay	1	7
Gus	4	3
Hal	5	4

3. Give code or pseudocode for the longest monotone increasing subsequence problem. Given a sequence of n real numbers $\mathrm{A}(1) \ldots \mathrm{A}(\mathrm{n})$, determine a subsequence (not necessarily contiguous) of maximum length in which the values in the subsequence form a strictly increasing sequence. (I have a Youtube video for this problem.)
4. Give an $O(n+m)$-time algorithm for finding a topological order, if there is one, for a directed graph given as an array of inneighbor lists. If the graph does not have a topological order, your algorithm should report that fact and find a cycle.
5. Suppose that you wish to store a $n \times n \times n 3$-dimensional array A of integers. You could declare int $\mathrm{A}[\mathrm{n}][\mathrm{n}][\mathrm{n}]$, using n^{3} space. However, in your application, you only need values of $\mathrm{A}[\mathrm{i}][\mathrm{j}][\mathrm{k}]$ for $\mathrm{i} \geq$ $\mathrm{j} \geq \mathrm{k}$. Explain how you would construct a data structure for A which takes $n^{3} / 6+O\left(n^{2}\right)$ space, and which allows the operators fetch and store to be executed in $O(1)$ time each.
6. Starting with an empty AVL tree, insert the items A, B, F, E, D, C in that order. Show each step, including the rotations.
7. A treap is a binary tree where the nodes are ordered in two ways. Each item has a value (say "Sam") and a randomly chosen priority. The nodes are ordered so that the values are alphabetic, as in a normal binary search tree, and the priorities are in heap order, just as in the binary tree implementation of a
heap. Create a treap with the following items, inserted in the order given, where the priority of each item is given in the second column. For ease of grading, make it a min-heap. Show the steps, including the rotations.

Ann	12
Bob	10
Eve	17
Dan	1
Cal	19
Ted	4
Sue	5

8. Find a page on the internet which explains the Collatz conjecture. For any positive number n, let $f(n)$ $=\mathrm{n} / 2$ if n is even, $3 \mathrm{n}+1$ if n is odd. The conjeccture is that, if you start with any positive integer, you will reach 1 after applying f finitely many times. That number of times is called the total stopping time of n.

For example, $\mathrm{f}(10)=5$, since the sequence is $10,5,16,8,4,2,1$. Here is a recursive function which computes total stopping time:

```
int TST(int n)
    {
        assert(n > 0);
        if (n == 1) return 0;
        else if (n%2) return TST(3*n+1);
        else return TST(n/2);
    }
```

Describe a program to find the total stopping times of all positive integers from 1 to 100, using memoization. Why is memoization better than either recursion or dynamic programming for this problem? Hint: try computing TNT(27).

