University of Nevada, Las Vegas Computer Science 477/677 Fall 2020

 Answers to Assignment 8: Due Monday November 30, 2020
Name:

Your answers must be written in a pdf file and emailed to the graudate assistant, Tandreana Chua chuat4@unlv.nevada.edu, by midnight November 30. Your file must not exceed 10 megabytes, and must print out to at most 8 pages.

Unless otherwise specified, n refers to the number of vertices and m refers to the number of edges of a graph or directed graph.

1. Write pseudocode for an algorithm which solves the single source shortest path problem for a sparse weighted directed graph G. Assume that the graph is given to you as an array In $[n]$ of in-neighbor lists. Each item in each list In[i] is an ordered pair (j, w), where w is the weight of the edge (j, i). If there are m edges, where $m \geq n$ and if, for each vertex i, the least weight path from 0 to i has at most k edges, the time complexity of your code must be $O(\mathrm{~km})$. Your code must also halt with an error message if G has a negative cycle.
```
dist[0] = 0;
for(int i = 0; i < n; i++) dist[i] = infinity;
bool changed = true;
while(changed and dist[0] >= 0)
    {
        changed = false;
        for(int i = 0; i < n; i++)
            for (all (j,w) in In[i])
            {
            temp = dist[j] + w;
            if(temp < dist[i])
                {
                        dist[i] = temp;
                        back[i] = j;
                        changed = true;
            }
        }
    }
if(dist[0] < 0) cout << "There is a negative cycle" << endl;
```

2. Let A be a virtual triangular array, where $A[i][j]$ is defined if and only if $0 \leq j \leq i<n$. The values of A are stored sequentially in main memory in row major order. $A[0][0]$ is stored at location B, and thus $A[1][1]$ is stored at location $B+2$ and $A[n-1][n-1]$ is stored at location $B+\frac{n(n+1)}{2}-1$. At what location in main memory is $A[45][10]$ stored? (No, you don't need to know the value of n to answer this question, as long as $n>45$.)

Rows 0 through 44 contain $1+2+\ldots+45=\frac{45 \times 46}{2}=1035$ items. Thus $A[45][10]$ is in location 1035 $+10=1045$.
3. A sparse array $A[N]$ can be stored efficiently using a search structure. We assume that there is some set of integers I such that $A[i]=0$ unless $i \in I$. Since A is sparse, we will assume the cardinality of I is much smaller than N. The items stored in the search structure are ordered pairs of the form (i, x) where $A[i]=x$. Write pseudocode for fetch and store.

Fetch (i) will return x if the search structure contains the ordered pair (i, x). Otherwise Fetch (i) will return 0 .

Store (i, x) will insert the pair (i, x) into the search structure. If the pair (i, y) for some y is already in the search structure, it will be overwritten.
4. Sketch the dag (directed acyclic graph) G given below as an array of sets of outneighbors. Then sketch the transitive closure and the transitive reduction of G.

$$
\text { Out }[1]=\{2,4\}
$$

$$
\text { Out }[2]=\{3,4,6\}
$$

$$
\operatorname{Out}[3]=\{6\}
$$

$$
\operatorname{Out}[4]=\{5\}
$$

$$
\text { Out }[5]=\{6\}
$$

$$
\text { Out }[6]=\emptyset
$$

G

Transitive Closure of G

Transitive Reduction of G

