
Computer Science 477/677 Fall 2020

University of Nevada, Las Vegas Computer Science 477/677 Fall 2020

Answers to Practice for the Final Examination

This version Sun Dec 6 13:05:04 PST 2020

The entire practice test is 565 points.

1. True or False. Write “O” if the answer is not known to science at this time. [5 points each]

(a) F Computers are so fast today that complexity theory is only of theoretical, but not practical,

interest.

(b) T The inverse Ackermann function, α(n), grows so slowly that, from a practical (as opposed to

theoretical) point of view, it might as well be constant.

(c) O If a problem is NP-complete, there is no polynomial time algorithm which solves it.

(d) F Quicksort takes Θ(n log n) time on an array of size n.

(e) T Planar graphs are sparse.

(f) T Acyclic graphs are sparse.

(g) F Acyclic directed graphs are sparse.

2. Fill in the blanks. [5 points each blank.]

(a) If a planar graph G has 20 edges, then the number of vertices of G cannot be less than 9.

(b) A directed acyclic graph with 5 vertices cannot have more than 10 arcs, and a directed acyclic graph

with 6 vertices cannot have more than 15 arcs. A directed acyclic graph with 10 vertices cannot

have more than 45 arcs.

(c) A directed acyclic graph with 20 arcs cannot have fewer than 7 vertices. (You must give the best

possible answer, exactly. No partial credit.)

(d) The height of a binary tree with 50 nodes is at least 5.

(e) In perfect hashing, there are no collisions.

(f) If separate chaining is used to resolve collisions in a hash table with n items and n places in the

array and if the hash function is pseudo-random, then approximately 8% of the places will have

more than two items. Pick the best answer from among these choices: (0%, 1%, 2%, 4%, 8%, 16%,

32%)

Hint: approximately 36.8% of the places will have no items.

(g) Ω(n log n).

(h) Radix, or bucket sorting is not comparison-based.

(i) The infix expression (x + y) ∗ z is equivalent to the prefix expression ∗+ xyz and the postfix

expression xy + z∗.



(j) What is the only difference between the abstract data types queue and stack?

In a stack, only the most recently inserted item may be deleted (LIFO), while in a queue, only the

least recently inserted item may be deleted (LIFO).

(k) The items stored in a priority queue (that includes stacks, queues, and heaps) represent unfulfilled

obligations.

(l) Name a divide-and-conquer searching algorithm.

Binary search.

(m) Name two divide-and-conquer sorting algorithms.

Mergesort and quicksort.

(n) The following is pseudo-code for which sorting algorithm we’ve discussed?

Selection sort.

int x[n];

obtain values of x;

for(int i = n-1; i > 0; i--)

Find the largest element of x[0], ... x[i] and swap it with x[i]

(o) The following is pseudo-code for which sorting algorithm we’ve discussed?

Bubblesort.

int x[n];

obtain values of x;

bool finished = false;

for(int i = n-1; i > 0 and not finished; i--)

{

finished = true;

for(int j = 0; j < i; j++)

if(x[j] > x[j+1])

{

swap(x[j],x[j+1]);

finished = false;

}

}

3. Give the asymptotic complexity, in terms of n, of each of the following code fragments. [10 points each]

(a) for(int i = n; i > 1; i = i/2)

cout << "hello world" << endl;

Θ(log n)

(b) for(int i = 1; i < n; i++)

for(int j = 1; j < i; j = 2*j)

cout << "hello world" << endl;

Θ(n log n)

2



(c) for(int i = 1; i < n; i++)

for(int j = i; j < n; j = 2*j)

cout << "hello world" << endl;

Θ(n)

(d) for(int i = 2; i < n; i = i*i)

cout << "hello world" << endl;

Θ(log log n)

4. [10 points] Name one problem which is known to beNP-complete.

5. Solve the recurrences. Give asymptotic answers in terms of n, using either O, Ω, or Θ, whichever is most

appropriate. (10 points each)

(a) F (n) = 2F
(

n
2

)

+ n Θ(n log n)

(b) F (n) ≥ 4F
(

n
2

)

+ n2 Θ(n2 log n)

(c) F (n) = F (n− 1) + n
4

Θ(n2)

(d) F (n) ≤ F
(

n
2

)

+ F
(

n
4

)

+ F
(

n
5

)

+ n Θ(n)

(e) F (n) = F
(

n−√
n
)

+ n Θ
(

n3/2
)

(f) F (n) = F (log n) + 1 Θ(log∗ n)

6. [20 points] Use dynamic programming to compute the length of the longest common subsequence of the

strings “011011001” and “1010011001.”

1 0 1 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1

1 0 1 1 2 2 2 2 2 2 2 2

1 0 1 1 2 2 2 3 3 3 3 3

0 0 1 2 2 3 3 3 3 4 4 4

1 0 1 2 3 3 3 4 4 4 4 5

1 0 1 2 3 3 3 4 5 5 5 5

0 0 1 2 3 4 4 4 5 6 6 6

0 0 1 2 3 4 5 5 5 6 7 7

1 0 1 2 3 4 5 6 6 6 7 8

The length of the longest common subsequence is 8.

3



7. [20 points] Use dynamic programming to compute the Levenshtein distance between the strings “abcd-

abc” and “bdacbcd.”

a b c d a b c

0 1 2 3 4 5 6 7

b 1 1 1 2 3 4 5 6

d 2 2 2 2 2 3 4 5

a 3 2 3 3 3 2 3 4

c 4 3 3 3 4 3 3 3

b 5 4 3 4 4 4 3 4

c 6 5 4 3 4 5 4 3

d 7 6 5 4 3 4 5 4

The Levenshtein distance between those two strings is 4.

8. [20 points] Design a dynamic programming to compute the maximum sum of any contiguous subsequence

of a given sequence of numbers. For example, if the given sequence is 2, 1,−4, 6,= 3, 7,−1.2.− 2, 1 that

sum is 6 + (−3) + 7 + (−1) + 2 = 11. (There is an O(n)-time algorithm.)

Let x1, x2, . . . xn be the sequence. We construct two arrays. Let A[i] be the largest sum of any contiguous

subsequence of x1, x2, . . . xi, and let B[i] be the largest sum of any contiguous subsequence of x1, x2, . . . xi

which includes xi. Write X[i] for xi.

A[0] = 0;

B[1] = X[1]

A[1] = max{0.B[1]}

for(i = 2 to n)

{

B[i] = X[i} + max{0,B[i-1]}

A[i] = max{A[i-1],B[i]}

}

write A[n]

9. Solve each of the following recurrences, giving the answer in terms of O, Θ, or Ω, whichever is most

appropriate [10 points each].

(a) T (n) < T (n− 2) + n2 T (n) = O(n3)

(b) F (n) ≥ F (
√
n) + lg n F (n) = Ω(log n)

(c) G(n) ≥ G(n− 1) + n G(n) = Ω(n2)

(d) F (n) = 4F (n/2) + n2 F (n) = Θ(n2)

(e) H(n) ≤ 2H(
√
n) +O(log n) H(n) = O(log n log log n)

(f) K(n) = K(n−√
n) + 1 K(n) = Θ(

√
n)

(g) F (n) = 4F
(

3n
4

)

+ n5 F (n) = Θ(n5)

4



10. Find the asymptotic complexity, in terms of n, for each of these fragments, expressing the answers using

O, Θ, or Ω, whichever is most appropriate.

(a) for(i = 0; i < n; i = i+1);

cout << "Hi!" << endl;

Θ(n)

(b) for(i = 1; i < n; i = 2*i);

cout << "Hi!" << endl;

Θ(log n)

(c) for(i = 2; i < n; i = i*i);

cout << "Hi!" << endl;

Θ(log log n)

(d) The following code models the first phase of heapsort.

for(int i = n; i > 0; i--)

for(int j = i; 2*j <= n; j = 2*j)

cout << "swap" << endl;

Θ(n)

(e) The following code models the second phase of heapsort.

for(int i = n; i > 0; i--}

{

cout << "swap" << endl;

for(int j = 1; 2*j <= i; j = 2*j)

cout << "swap" << endl;

}

Θ(n log n)

(f) The following code models insertion of n items into an AVL tree.

for(int i = 1; i < n; i++)

for(int j = n; j > 0; j = j/2)

cout << "check AVL property and possibly rotate" << endl;

Θ(n log n)

11. Solve each of the following recurrences, expressing the answers using O, Θ, or Ω, whichever is most

appropriate. [10 points each]

(a) F (n) = F (n/2) + 1 F (n) = Θ(log n)

(b) F (n) = F (n− 1) +O(log n)

(c) F (n) = F
(n

2

)

+ 2F
(n

4

)

+ n F (n) = Θ(n log n)

(d) F (n) = F

(

3n

5

)

+ F

(

4n

5

)

+ n2 F (n) = Θ(n2 log n)

(e) F (n) = F (n− 2) + n F (n) = Θ(n2)

5



12. Use Huffman’s algorithm to construct an optimal prefix code for the alphabet {A,B,C,D,E, F} where

the frequencies of the symbols are given by the following table.

A 2

B 8

C 9

D 3

E 7

F 5

13. [10 points] Write pseudo-code for binary search.

Assume that {X[i]} for 0 ≤ i < n is an ordered array. Let x be the sought value.

lo = 0

hi = n

while(lo+1 < hi)

{

mid = (lo+hi)/2

if(x < X[mid]) hi = mid

else lo = mid

}

if(x = X[hi]) write "x is found in position hi"

else write "x is not in the array"

14. Find the asymptotic complexity, in terms of n, for each of these fragments, expressing the answers using

O, Θ, or Ω, whichever is most appropriate. [10 points each]

(a) for(int i = 1; i*i < n; i++)

cout << "Hi!" << endl;

Θ(
√
n)

(b) for(int i = n; i > 1; i = sqrt(i));

cout << "Hi!" << endl;

Θ(log log n)

Find the asymptotic time complexity, in terms of n, for each of these functions, expressing the answers

using O, Θ, or Ω, whichever is most appropriate. [10 points each]

(a) int f(int n)

{

if (n < 2) return 1;

else return f(n-1)+f(n-1);

}

Θ(2n)

(b) void hello(int n)

{

6



if(n >= 1)

{

for(int i = 1; i < n; i++)

cout << "Hello!" << endl;

hello(n/2);

hello(n/2);

}

}

Θ(n log n)

15. [20 points] Define the Collatz function as follows:

int collatz(int n)

{

assert(n > 0);

if(n == 1) return 0;

else if (n%2) return collatz(3*n+1); // n is odd, greater than 1

else return collatz(n/2); // n is even

}

Write pseudo-code for a memoization algorithm which prints collatz(n) for all n from 1 to 1000.

16. [20 points] Give pseudocode for a recursive algorithm which computes the median of the union of two

sorted lists in logarithmic time.

17. [20 points] Describe a randomized algorithm which finds the kth smallest element of an unsorted list

of n distinct numbers, for a given k ≤ n, in O(n) expected time. (By “distinct,” I mean that no two

numbers in the list are equal.)

18. [20 points] Walk through the A∗ algorithm for the following weighted graph to find the shortest path

from S to T. Edge weights are shown in black, and the values of the heuristic are shown in red.

S

A
B

C

D
E

F

G
H

I

J
K

L

M

N
O

P

Q

R
T

6

8

9

6

10

6

9

8

6

6

8

7

6

8

6

7

8

9
97

10

5

105

6

8
6

7

8

7

6

7

4 9

0

7

9

6

9

13

15

14

14

13

20

20

19

27

25

29

31

26
8

6

Open: S
Closed:

4

10

19. [20 points] Circle the strong components of the directed graph.

7



a

b

e f

g h

i

j

kl

c

d

20. [20 points] Give pseudocode for the Bellman-Ford algorithm.

21. [20 points] Give pseudocode for the Floyd-Warshall algorithm.

for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++)

dist[i,j] = infinity;

for(int i = 0; i < n; i++)

dist[i,i] = 0;

for(int j = 0; j < n; j++)

for(int i = 0; i < n; i++)

for(int k = 0; i < n; i++)

{

temp = dist[i,j]+dist[j,k];

if(tenp < dist[i,k])

{

dist[i,k] = temp;

back[i,k] = i;

}

}

22. [20 points] Show the minimum spanning tree of the following weighted graph.

A D C M

H

B

I
K 

F

L
N

J
EG

1

2

1

12
3

4 3

45
6 8

6

7

9

67
8

7
8 9

7

8

8


