1. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω, Θ in the blank.

(a) \(n - 100 = \Theta(n - 200)\)
(b) \(n^{1/2} = O(n^{2/3})\)
(c) \(100n + \log n = \Theta(n + \log^2 n)\)
(d) \(n \log n = \Theta(10n \log(10n))\)
(e) \(n \log n = \Omega(10n + \log(10n))\)
(f) \(\log(2n) = \Theta(\log(3n))\)
(g) \(10 \log n = \Theta(\log(n^2))\)
(h) \(n^{1.01} = \Omega(n \log^2 n)\)
(i) \(n^2 / \log n = \Omega(n \log^2 n)\)
(j) \(n^{0.1} = \Omega(\log^2 n)\)
(k) \((\log n)^{\log n} = \Omega(n / \log n)\)
(l) \(\sqrt{n} = \Omega(\log^3 n)\)
(m) \(n^{1/2} = O(5^{\log_2 n})\)
(n) \(n^2 = O(3^n)\)
(o) \(2^n = \Theta(2^{n+1})\)
(p) \(n! = \Omega(2^n)\)
(q) \(\log n^{\log n} = O(2^{(\log_2 n)^2})\) [hard]
(r) \(\sum_{i=1}^{n} i^k = \Theta(n^{k+1})\)

2. Work problem 0.3(c) on page 9 of the textbook.

\(F_n = F_{n-1} + F_{n-2}\) We start by assuming \(F_n = 2^n C\) for some \(C\). This is false, but it’s close to true in the limit, i.e. \(\lim_{n \to \infty} \frac{F_n}{2^n} = K = \Theta(1)\) We replace each Fibonacci number by that approximation:

\[
\frac{F_{n+2}}{2^{C(n+2)}K} = \frac{F_{n+1} + F_{n}}{2^{C(n+1)} + 2^n K}
\]

Divide both sides by \(2^{Cn}K\):

\[
2^{2C} = 2^C + 2^0
\]

Substitute \(x = 2^C\):

\[
x^2 = x + 1
\]

The quadratic formula gives us \(x = \frac{1 \pm \sqrt{5}}{2}\)

But \(x = 2^C\) cannot be negative. Thus:

\[
2^C = \frac{1 + \sqrt{5}}{2} \quad \text{the golden ratio!}
\]

\[
C = \log_2 \left(\frac{1 + \sqrt{5}}{2}\right)
\]
3. Consider the following C++ program.

```cpp
void process(int n)
{
    cout << n << endl;
    if(n > 1) process(n/2);
    cout << n%2;
}

int main()
{
    int n;
    cout << "Enter a positive integer: ";
    cin >> n;
    assert(n > 0);
    process(n);
    cout << endl;
    return 1;
}
```

The last line of the output of `process(n)` is the binary numeral for n.

4. The recursive algorithm implemented below as a C++ function is used as a subroutine during the calculation of the level payment of an amortized loan. What does it compute?

```cpp
float square(float x)
{
    return x*x;
}

float mystery(float x, int k)
{
    if (k == 0) return 1.0;
    else if(x == 0.0) return 0.0;
    else if (k < 0) return 1/mystery(x,-k);
    else if (k%2) return x*mystery(x,k-1);
    else return mystery(square(x),k/2);
}
```

`mystery(x,k)` returns x^k.