
University of Nevada, Las Vegas Computer Science 477/677 Fall 2021

Answers to Assignment 2: Due Wednesday September 8, 2021

Name:

Submit your file to Canvas by 11:59 PM on September 8, 2021. If you have any problems submitting,

contact the grader, Nicholas Heerdt.

1. Each of these code fragments takes if O(n log n).time, but not necessarily Θ(n log n). Give the asymptotic

complexity of each in terms of n, using Θ in each case.

(a) for(int i = 1; i < n; i++)

for(int j = 1; j < i; j = 2*j);

cout << "Hello" << endl;
∫ n

x=1
(lnx)dx = x lnx− x|nx=1 = Θ(n log n)

(b) for(int i = 1; i < n; i++)

for(int j = i; j < n; j = 2*j);

cout << "Hello" << endl;
∫ n

x=1
(lnn− lnx)dx = x lnx− x lnx+ x|nx=1 = Θ(n)

(c) for(int i = 1; i < n; i=2*i)

for(int j = 1; j < i; j++);

cout << "Hello" << endl;

Let k = log2i; then 2k = i.

for(int k = 0; i < log_2 n; k++)

for(int j = 1; j < 2^k; j++);

cout << "Hello" << endl;

Let x be the continuous analog of k and y the continuos analog of j.

∫ log2n

x=0

∫ 2x

y=1
dydx =

∫ log2n

x=0
(2x − 1)dx =

2x − x

ln 2

∣

∣

∣

∣

log
2
n

0

=
2log2

n − 1

ln 2
=

n− 1

ln 2
= Θ(n)

(d) for(int i = 1; i < n; i=2*i)

for(int j = i; j < n; j++);

cout << "Hello" << endl;cd /home/larmore/Dropbox/Courses/CS477/S21

Let k = log2i; then 2k = i.

for(int k = 0; i < log_2 n; k++)

for(int j = 2^k; j < n; j++);

cout << "Hello" << endl;

Let x be the continuous analog of k and y the continuos analog of j.

∫ log2n

x=0

∫ n

y=2x
dydx =

∫ log2n

x=0
(n− 2x)dx =

(

nx− 2x

ln 2

)∣

∣

∣

∣

log
2
n

x=0

= n log2 n− 2log2
n − 1

ln 2
= n log2 n− n− 1

ln 2
= Θ(n log n)



(e) for(int i = n; i > 1; i=i/2)

for(int j = i; j > 1; j--);

cout << "Hello" << endl;

Same as (c). Θ(n)

(f) for(int i = n; i > 1; i=i/2)

for(int j = n; j > i; j--);

cout << "Hello" << endl;

Same as (d). Θ(n log n)

2. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in

terms of n, using Θ.

(g) for(int i = 1; i < n; i=2*i)

for(int j = 1; j < i; j=2*j);

cout << "Hello" << endl;

Hint: Use substitution. Let m = log n, k = log i, l = log j.

for(int k = 0; k < m; k++)

for(int l = 0; i < k; l++)

cout << "Hello" << endl;

Θ(m2) = Θ(log2 n)

(h) for(int i = 2; i < n; i=i*i)

cout << "Hello" << endl;

Hint: Use substitution. Let m = log n, k = log i.

Use the fact that log(xy) = y log x

for(int k = 1; k < m; k=2*k)

cout << "Hello" << endl;

Θ(logm) = Θ(log log n)

(i) for(int i = 2; i < n; i=i*i)

for(int j = 1; j < i; j = 2*j)

cout << "Hello" << endl;

Hint: Use substitution. Let m = log n, k = log i, l = log j.

for(int k = 1; k < m; k=2*k)

for(int l = 0; l < k; l++)

Θ(m) = Θ(log n)

(j) for(int i = n; i > 1; i = log i)

cout << "Hello" << endl;

We will give the solution to this problem at the end of the document.

(k) for(int i = 2; i < n; i = i*i)

for(int j = 0; j < i; j++)

cout << "Hello" << endl;

2



In my opinion, this is the hardest problem in this assignment. The time complexity of the code is O

of one function of n and Ω of a different function of n, but is not Θ of any of the “usual” functions

of n. Give both the O and the Ω answers, both of which are “usual” functions.1

Answer: The time complexity both O(n) and Ω(
√
n).

The outer loop iterates O(log log n) times. For each value of i used during the outer loop, , the

inner loop iterates I times. Those values of i are numbers of the form 22
k

for integers k ≥ 0. That

is,

22
0

= 2,

22
1

= 22 = 4,

22
2

= 42 = 16,

22
3

= 162 = 256,

22
4

= 2562 = 65536,

22
5

= 655362 = 4294967296.

Since i increases rapidly, the time complexity of the code is dominated by the largest value of i

generated in the outer loop, which is the largest value of 22
k

less than n. Let’s call that value I.

For example, if 4 < n ≤ 16, I = 4; if 16 < n ≤ 256, I = 16; and if 256 < n ≤ 65536, I = 256; and

so forth. Note that I < n ≤ I2, which implies that
√
n ≤ I < n. The time complexity of the code

is Θ(I), and we obtain our result.

3. Solve each of the following recurrences, giving the answer as Θ of a function of n.

(l) F (n) = F (n/2) + n2

Master theorem: A = 1, B = 2, C = 2: Note that A < BC .

Thus F (n) = Θ(nC) = Θ(n2)

(m) F (n) = F (n/3) + 1

Master theorem: A = 1, B = 3, C = 0: Note that A = BC .

Thus F (n) = Θ(nC log n) = Θ(log n)

(n) F (n) = 16F (n/4) + n2

Master theorem: A = 16, B = 4, C = 2. Note that A = BC .

Thus F (n) = Θ(nC log n) = Θ(n2 log n)

(o) F (n) = F (n− 1) + n5

Anti-derivative method:
F (n)− F (n− 1)

1
= n5

F ′(n) = Θ(n5)

F (n) = Θ(n6)

(p) F (n) = F (n− log n) + log n

Anti-derivative method:
F (n)− F (n− log n)

log n
=

log n

log n
F ′(n) = Θ(1)

F (n) = Θ(n)

1By usual functions I mean the functions we have discussed so far in class, which include polynomials, logarithms, iterated

logarithms, powers of logarithms, roots, and even the iterated logarithm log∗.

3



(q) F (n) = 16F (n/4) + n

Master theorem: A = 16, B = 4, C = 1. Note that A > BC , and that logB A = 2.

Thus F (n) = Θ
(

nlog
B

A
)

= Θ(n2).

Answer to Problem 2(j)

Use the substitution m = log∗ n, k = log∗ i. We obtain:

for(int k = m; k > 0; k--)

cout << "Hello" << endl;

The recusive definition of log∗ x for any real number x is: log∗ x = 0 if x ≤ 1

log∗ x = 1 + log∗(log x) if x > 1

Let i be the “old” value of i in the code, and ı̄ the “new” value of i, namely log i. Let k be the old value

of k and k̄ the new value of k. Thus

m = log∗ n

ı̄ = log i

k = log∗ i

k̄ = log∗ ı̄

From the definition of log ∗ we have:

k = log∗ i = 1 + log∗ log i = 1 + log∗ ı̄ = 1 + k̄. Thus k̄ = k − 1, and the last parameter of the for

statement is k −−.

The solution is Θ(m) = Θ(log∗ n) where log∗ is the iterated logarithm. For any positive real number x,

log∗ x is the number of times the logarithm function must be iteratively applied before the result is less

than or equal to 1.

We use the base 2 logarithm. In that case, the iterated algorithm is sometimes written as lg∗.

(a) What is log∗ 65536? Answer: 4.

(b) What is log∗ 65537? Answer: 5.

(c) Let N be the number of baryons in the visible universe. (Neutrons and protons are baryons.) What

is log∗ N? Answer: 5.

(d) It has been seriously conjectured that the radius of the entire universe is 10100 times the radius of

the visible universe! If that is true, what is log∗ of the number of baryons in the universe? Answer

5.

log∗ grows very slowly. However, it is not the slowest growing unbounded function that regularly

arises in complexity theory. That honor goes to the inverse Ackermann function.

4


