University of Nevada, Las Vegas Computer Science 477/677 Fall 2021

Answers to Assignment 2: Due Wednesday September 8, 2021

Name:__

Submit your file to Canvas by 11:59 PM on September 8, 2021. If you have any problems submitting, contact the grader, Nicholas Heerdt.

1. Each of these code fragments takes if $O(n \log n)$ time, but not necessarily $\Theta(n \log n)$. Give the asymptotic complexity of each in terms of n, using Θ in each case.

(a) for(int i = 1; i < n; i++)
for(int j = 1; j < i; j = 2*j);
cout << "Hello" << endl;
$\int_{x=1}^{n}(\ln x)dx = x \ln x - x|_{x=1}^{n} = \Theta(n \log n)$

(b) for(int i = 1; i < n; i++)
for(int j = i; j < n; j = 2*j);
cout << "Hello" << endl;
$\int_{x=1}^{n}(\ln n - \ln x)dx = x \ln x - x \ln x + x|_{x=1}^{n} = \Theta(n)$

(c) for(int i = 1; i < n; i=2*i)
for(int j = 1; j < i; j++);
cout << "Hello" << endl;
Let $k = \log_2 i$; then $2^k = i$.
for(int k = 0; i < log_2 n; k++)
for(int j = 1; j < 2^k; j++);
cout << "Hello" << endl;
Let x be the continuous analog of k and y the continuous analog of j.
$\int_{x=0}^{\log_2 n} \int_{y=2^x}^{2^y} dy dx = \int_{x=0}^{\log_2 n} (2^y - 1)dx = \frac{2^x - x}{\ln 2} \bigg|_{0}^{\log_2 n} = \frac{2^{\log_2 n} - 1}{\ln 2} = \frac{n - 1}{\ln 2} = \Theta(n)$

(d) for(int i = 1; i < n; i=2*i)
for(int j = i; j < n; j++);
cout << "Hello" << endl;
Let x be the continuous analog of k and y the continuous analog of j.
$\int_{x=0}^{\log_2 n} \int_{y=2x}^{2y} dy dx = \int_{x=0}^{\log_2 n} (n - 2^x)dx = \left(\frac{nx - \frac{2^x}{\ln 2}}{x=0} \right) \bigg|_{x=0}^{\log_2 n} = n \log_2 n - \frac{\log_2 n - 1}{\ln 2} = n \log_2 n - \frac{n - 1}{\ln 2} = \Theta(n \log n)$
(e) for(int i = n; i > 1; i=i/2)
 for(int j = i; j > 1; j--);
 cout << "Hello" << endl;
Same as (c). Θ(n)

(f) for(int i = n; i > 1; i=i/2)
 for(int j = n; j > i; j--);
 cout << "Hello" << endl;
Same as (d). Θ(n log n)

2. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in terms of n, using Θ.

(g) for(int i = 1; i < n; i=2*i)
 for(int j = 1; j < i; j=2*j);
 cout << "Hello" << endl;
Hint: Use substitution. Let $m = \log n$, $k = \log i$, $l = \log j$.
 for(int k = 0; k < m; k++)
 for(int l = 0; i < k; l++)
 cout << "Hello" << endl;
Θ(m^2) = Θ($\log^2 n$)

(h) for(int i = 2; i < n; i=i*i)
 cout << "Hello" << endl;
Hint: Use substitution. Let $m = \log n$, $k = \log i$.
Use the fact that $\log(x^y) = y \log x$
 for(int k = 1; k < m; k=2*k)
 cout << "Hello" << endl;
Θ($\log m$) = Θ($\log \log n$)

(i) for(int i = 2; i < n; i=i*i)
 for(int j = 1; j < i; j = 2*j)
 cout << "Hello" << endl;
Hint: Use substitution. Let $m = \log n$, $k = \log i$, $l = \log j$.
 for(int k = 1; k < m; k=2*k)
 for(int l = 0; i < k; l++)
 cout << "Hello" << endl;
Θ(m) = Θ($\log n$)

(j) for(int i = n; i > 1; i = log i)
 cout << "Hello" << endl;
We will give the solution to this problem at the end of the document.

(k) for(int i = 2; i < n; i = i*i)
 for(int j = 0; j < i; j++)
 cout << "Hello" << endl;
In my opinion, this is the hardest problem in this assignment. The time complexity of the code is O of one function of n and Ω of a different function of n, but is not Θ of any of the “usual” functions of n. Give both the O and the Ω answers, both of which are “usual” functions.\footnote{By \textit{usual functions} I mean the functions we have discussed so far in class, which include polynomials, logarithms, iterated logarithms, powers of logarithms, roots, and even the iterated logarithm \log^*.}

Answer: The time complexity both $O(n)$ and $\Omega(\sqrt{n})$.

The outer loop iterates $O(\log \log n)$ times. For each value of i used during the outer loop, the inner loop iterates I times. Those values of i are numbers of the form 2^{2^k} for integers $k \geq 0$. That is,
\[
\begin{align*}
2^{2^0} &= 2, \\
2^{2^1} &= 2^2 = 4, \\
2^{2^2} &= 4^2 = 16, \\
2^{2^3} &= 16^2 = 256, \\
2^{2^4} &= 256^2 = 65536, \\
2^{2^5} &= 65536^2 = 4294967296.
\end{align*}
\]

Since i increases rapidly, the time complexity of the code is dominated by the largest value of i generated in the outer loop, which is the largest value of 2^{2^k} less than n. Let’s call that value I. For example, if $4 < n \leq 16$, $I = 4$; if $16 < n \leq 256$, $I = 16$; and if $256 < n \leq 65536$, $I = 256$; and so forth. Note that $I < n \leq I^2$, which implies that $\sqrt{n} \leq I < n$. The time complexity of the code is $\Theta(I)$, and we obtain our result.

3. Solve each of the following recurrences, giving the answer as Θ of a function of n.

 (l) $F(n) = F(n/2) + n^2$
 Thus $F(n) = \Theta(n^C) = \Theta(n^2)$

 (m) $F(n) = F(n/3) + 1$
 Master theorem: $A = 1$, $B = 3$, $C = 0$: Note that $A = B^C$.
 Thus $F(n) = \Theta(n^C \log n) = \Theta(\log n)$

 (n) $F(n) = 16F(n/4) + n^2$
 Thus $F(n) = \Theta(n^C \log n) = \Theta(n^2 \log n)$

 (o) $F(n) = F(n - 1) + n^5$
 Anti-derivative method: $\frac{F(n) - F(n - 1)}{1} = n^5$
 $F'(n) = \Theta(n^5)$
 $F(n) = \Theta(n^6)$

 (p) $F(n) = F(n - \log n) + \log n$
 Anti-derivative method: $\frac{F(n) - F(n - \log n)}{\log n} = \frac{\log n}{\log n}$
 $F'(n) = \Theta(1)$
 $F(n) = \Theta(n)$
Master theorem: \(A = 16, B = 4, C = 1 \). Note that \(A > B^C \), and that \(\log_B A = 2 \).

Thus \(F(n) = \Theta(n^{\log_B A}) = \Theta(n^2) \).

Answer to Problem 2(j)

Use the substitution \(m = \log^* n, k = \log^* i \). We obtain:

```cpp
for(int k = m; k > 0; k--)
    cout << "Hello" << endl;
```

The recursive definition of \(\log^* x \) for any real number \(x \) is:
- \(\log^* x = 0 \) if \(x \leq 1 \)
- \(\log^* x = 1 + \log^* (\log x) \) if \(x > 1 \)

Let \(i \) be the “old” value of \(i \) in the code, and \(\bar{i} \) the “new” value of \(i \), namely \(\log i \). Let \(k \) be the old value of \(k \) and \(\bar{k} \) the new value of \(k \). Thus

\[
\begin{align*}
m &= \log^* n \\
\bar{i} &= \log i \\
k &= \log^* i \\
\bar{k} &= \log^* \bar{i}
\end{align*}
\]

From the definition of \(\log^* \) we have:
\[
k = \log^* i = 1 + \log^* \log i = 1 + \log^* \bar{i} = 1 + \bar{k}.
\]

Thus \(\bar{k} = k - 1 \), and the last parameter of the for statement is \(k - - \).

The solution is \(\Theta(m) = \Theta(\log^* n) \) where \(\log^* \) is the *iterated logarithm*. For any positive real number \(x \), \(\log^* x \) is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1.

We use the base 2 logarithm. In that case, the iterated algorithm is sometimes written as \(\lg^* \).

(a) What is \(\log^* 65536 \)? Answer: 4.

(b) What is \(\log^* 65537 \)? Answer: 5.

(c) Let \(N \) be the number of baryons in the visible universe. (Neutrons and protons are baryons.) What is \(\log^* N \)? Answer: 5.

(d) It has been seriously conjectured that the radius of the entire universe is \(10^{100} \) times the radius of the visible universe! If that is true, what is \(\log^* \) of the number of baryons in the universe? Answer 5.

\(\log^* \) grows very slowly. However, it is not the slowest growing unbounded function that regularly arises in complexity theory. That honor goes to the inverse Ackermann function.