University of Nevada, Las Vegas Computer Science 477/677 Fall 2021 Answers to Assignment 2: Due Wednesday September 8, 2021

Name:_____

Submit your file to Canvas by 11:59 PM on September 8, 2021. If you have any problems submitting, contact the grader, Nicholas Heerdt.

- 1. Each of these code fragments takes if $O(n \log n)$.time, but not necessarily $\Theta(n \log n)$. Give the asymptotic complexity of each in terms of n, using Θ in each case.
 - (a) for(int i = 1; i < n; i++) for(int j = 1; j < i; j = 2*j); cout << "Hello" << endl; $\int_{x=1}^{n} (lnx) dx = x \ln x - x|_{x=1}^{n} = \Theta(n \log n)$
 - - $\int_{x=1}^{n} (\ln n \ln x) dx = x \ln x x \ln x + x|_{x=1}^{n} = \Theta(n)$
 - (c) for(int i = 1; i < n; i=2*i)
 for(int j = 1; j < i; j++);
 cout << "Hello" << endl;
 Let k = log₂i; then 2^k = i.

for(int k = 0; i < log_2 n; k++)
for(int j = 1; j < 2^k; j++);
cout << "Hello" << endl;</pre>

Let x be the continuous analog of k and y the continuous analog of j.

$$\int_{x=0}^{\log_2 n} \int_{y=1}^{2^x} dy dx = \int_{x=0}^{\log_2 n} (2^x - 1) dx = \frac{2^x - x}{\ln 2} \Big|_{0}^{\log_2 n} = \frac{2^{\log_2 n} - 1}{\ln 2} = \frac{n-1}{\ln 2} = \Theta(n)$$

(d) for(int i = 1; i < n; i=2*i)
 for(int j = i; j < n; j++);
 cout << "Hello" << endl;cd /home/larmore/Dropbox/Courses/CS477/S21</pre>

```
Let k = \log_2 i; then 2^k = i.
```

for(int k = 0; i < log_2 n; k++)
for(int j = 2^k; j < n; j++);
cout << "Hello" << endl;</pre>

Let x be the continuous analog of k and y the continuous analog of j.

$$\int_{x=0}^{\log_2 n} \int_{y=2^x}^n dy dx = \int_{x=0}^{\log_2 n} (n-2^x) dx = \left(nx - \frac{2^x}{\ln 2}\right) \Big|_{x=0}^{\log_2 n}$$
$$= n \log_2 n - \frac{2^{\log_2 n} - 1}{\ln 2} = n \log_2 n - \frac{n-1}{\ln 2} = \Theta(n \log n)$$

- (e) for(int i = n; i > 1; i=i/2) for(int j = i; j > 1; j--); cout << "Hello" << endl; Same as (c). Θ(n)
 (f) for(int i = n; i > 1; i=i/2) for(int j = n; j > i; j--); cout << "Hello" << endl; Same as (d). Θ(n log n)
- 2. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in terms of n, using Θ .

```
(g) for(int i = 1; i < n; i=2*i)
     for(int j = 1; j < i; j=2*j);</pre>
      cout << "Hello" << endl;</pre>
    Hint: Use substitution. Let m = \log n, k = \log i, l = \log j.
    for(int k = 0; k < m; k++)
     for(int l = 0; i < k; l++)</pre>
      cout << "Hello" << endl;</pre>
    \Theta(m^2) = \Theta(\log^2 n)
(h) for(int i = 2; i < n; i=i*i)
     cout << "Hello" << endl;</pre>
    Hint: Use substitution. Let m = \log n, k = \log i.
    Use the fact that \log(x^y) = y \log x
    for(int k = 1; k < m; k=2*k)
     cout << "Hello" << endl;</pre>
    \Theta(\log m) = \Theta(\log \log n)
(i) for(int i = 2; i < n; i=i*i)
     for(int j = 1; j < i; j = 2*j)</pre>
      cout << "Hello" << endl;</pre>
    Hint: Use substitution. Let m = \log n, k = \log i, l = \log j.
    for(int k = 1; k < m; k=2*k)
     for(int l = 0; l < k; l++)
    \Theta(m) = \Theta(\log n)
(j) for(int i = n; i > 1; i = log i)
     cout << "Hello" << endl;</pre>
    We will give the solution to this problem at the end of the document.
(k) for(int i = 2; i < n; i = i*i)
     for(int j = 0; j < i; j++)</pre>
```

cout << "Hello" << endl;</pre>

```
\mathbf{2}
```

In my opinion, this is the hardest problem in this assignment. The time complexity of the code is O of one function of n and Ω of a different function of n, but is not Θ of any of the "usual" functions of n. Give both the O and the Ω answers, both of which are "usual" functions.¹

Answer: The time complexity both O(n) and $\Omega(\sqrt{n})$.

The outer loop iterates $O(\log \log n)$ times. For each value of *i* used during the outer loop, , the inner loop iterates *I* times. Those values of *i* are numbers of the form 2^{2^k} for integers $k \ge 0$. That is,

 $2^{2^{0}} = 2,$ $2^{2^{1}} = 2^{2} = 4,$ $2^{2^{2}} = 4^{2} = 16,$ $2^{2^{3}} = 16^{2} = 256,$ $2^{2^{4}} = 256^{2} = 65536,$ $2^{2^{5}} = 65536^{2} = 4294967296.$

Since *i* increases rapidly, the time complexity of the code is dominated by the largest value of *i* generated in the outer loop, which is the largest value of 2^{2^k} less than *n*. Let's call that value *I*. For example, if $4 < n \le 16$, I = 4; if $16 < n \le 256$, I = 16; and if $256 < n \le 65536$, I = 256; and so forth. Note that $I < n \le I^2$, which implies that $\sqrt{n} \le I < n$. The time complexity of the code is $\Theta(I)$, and we obtain our result.

- 3. Solve each of the following recurrences, giving the answer as Θ of a function of n.
 - (1) $F(n) = F(n/2) + n^2$ Master theorem: A = 1, B = 2, C = 2: Note that $A < B^C$. Thus $F(n) = \Theta(n^C) = \Theta(n^2)$
 - (m) F(n) = F(n/3) + 1Master theorem: A = 1, B = 3, C = 0: Note that $A = B^C$. Thus $F(n) = \Theta(n^C \log n) = \Theta(\log n)$
 - (n) $F(n) = 16F(n/4) + n^2$ Master theorem: A = 16, B = 4, C = 2. Note that $A = B^C$. Thus $F(n) = \Theta(n^C \log n) = \Theta(n^2 \log n)$
 - (o) $F(n) = F(n-1) + n^5$ Anti-derivative method: $\frac{F(n) - F(n-1)}{1} = n^5$ $F'(n) = \Theta(n^5)$ $F(n) = \Theta(n^6)$
 - (p) $F(n) = F(n \log n) + \log n$ Anti-derivative method: $\frac{F(n) - F(n - \log n)}{\log n} = \frac{\log n}{\log n}$ $F'(n) = \Theta(1)$ $F(n) = \Theta(n)$

¹By usual functions I mean the functions we have discussed so far in class, which include polynomials, logarithms, iterated logarithms, powers of logarithms, roots, and even the iterated logarithm \log^* .

(q) F(n) = 16F(n/4) + nMaster theorem: A = 16, B = 4, C = 1. Note that $A > B^C$, and that $\log_B A = 2$. Thus $F(n) = \Theta(n^{\log_B A}) = \Theta(n^2)$.

Answer to Problem 2(j)

Use the substitution $m = \log^* n, k = \log^* i$. We obtain:

for(int k = m; k > 0; k--)
cout << "Hello" << endl;</pre>

The recusive definition of $\log^* x$ for any real number x is: $\log^* x = 0$ if $x \le 1$ $\log^* x = 1 + \log^*(\log x)$ if x > 1

Let *i* be the "old" value of *i* in the code, and \bar{i} the "new" value of *i*, namely log *i*. Let *k* be the old value of *k* and \bar{k} the new value of *k*. Thus

$$\begin{split} m &= \log^* n\\ \bar{\imath} &= \log i\\ k &= \log^* i\\ \bar{k} &= \log^* \bar{\imath}\\ \end{split}$$
 From the definition of log * we have:

 $k = \log^* i = 1 + \log^* \log i = 1 + \log^* \overline{i} = 1 + \overline{k}$. Thus $\overline{k} = k - 1$, and the last parameter of the for statement is k - -.

The solution is $\Theta(m) = \Theta(\log^* n)$ where \log^* is the *iterated logarithm*. For any positive real number x, $\log^* x$ is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1.

We use the base 2 logarithm. In that case, the iterated algorithm is sometimes written as lg^{*}.

- (a) What is $\log^* 65536$? Answer: 4.
- (b) What is $\log^* 65537$? Answer: 5.
- (c) Let N be the number of baryons in the visible universe. (Neutrons and protons are baryons.) What is log* N? Answer: 5.
- (d) It has been seriously conjectured that the radius of the entire universe is 10¹⁰⁰ times the radius of the visible universe! If that is true, what is log* of the number of baryons in the universe? Answer 5.

log^{*} grows very slowly. However, it is not the slowest growing unbounded function that regularly arises in complexity theory. That honor goes to the inverse Ackermann function.