1. Each of these code fragments takes $O(n \log n)$ time, but not necessarily $\Theta(n \log n)$. Give the asymptotic complexity of each in terms of n, using Θ in each case.

(a)
```
for(int i = 1; i < n; i++)
    for(int j = 1; j < i; j = 2*j);
    cout << "Hello" << endl;
```

(b)
```
for(int i = 1; i < n; i++)
    for(int j = i; j < n; j = 2*j);
    cout << "Hello" << endl;
```

(c)
```
for(int i = 1; i < n; i=2*i)
    for(int j = 1; j < i; j++);
    cout << "Hello" << endl;
```

(d)
```
for(int i = 1; i < n; i=2*i)
    for(int j = i; j < n; j++);
    cout << "Hello" << endl;
```

(e)
```
for(int i = n; i > 1; i=i/2)
    for(int j = i; j > 1; j--);
    cout << "Hello" << endl;
```

(f)
```
for(int i = n; i > 1; i=i/2)
    for(int j = n; j > i; j--);
    cout << "Hello" << endl;
```

2. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in terms of n, using Θ; except for the last problem.

(g)
```
for(int i = 1; i < n; i=2*i)
    for(int j = 1; j < i; j=2*j);
    cout << "Hello" << endl;
```

Hint: Use substitution. Let $m = \log n$, $k = \log i$, $l = \log j$.

(h)
```
for(int i = 2; i < n; i=i*i)
    cout << "Hello" << endl;
```

Hint: Use substitution. Let $m = \log n$, $k = \log i$.

Name: ________________________________
(i) for(int i = 2; i < n; i=i*i)
 for(int j = 1; j < i; j = 2*j)
 cout << "Hello" << endl;
Hint: Use substitution. Let m = log n, k = log i, l = log j.

(j) for(int i = n; i > 1; i = log i)
 cout << "Hello" << endl;
Hint: The answer is a function defined on page 136 of the textbook.

(k) for(int i = 2; i < n; i = i*i)
 for(int j = 0; j < i; j++)
 cout << "Hello" << endl;
In my opinion, this is the hardest problem in this assignment. The time complexity of the code is O of one function of n and Ω of a different function of n, but is not Θ of any of the “usual” functions of n. Give both the O and the Ω answers, both of which are “usual” functions.

3. Solve each of the following recurrences, giving the answer as Θ of a function of n.

(l) $F(n) = F(n/2) + n^2$

(m) $F(n) = F(n/3) + 1$

(n) $F(n) = 16F(n/4) + n^2$

(o) $F(n) = F(n - 1) + n^5$

(p) $F(n) = F(n - \log n) + \log n$

(q) $F(n) = 16F(n/4) + n$

1 By usual functions I mean all the functions we have discussed so far in class, which include polynomials, logarithms, iterated logarithms, powers of logarithms, roots, and even log*.