Dynamic Programming

3. For each of the following dynamic programming problems, what would you choose the subproblems to be?
(a) Find the longest monotone subsequence of a sequence.

The length of the longest monotone subsequence of the $i^{\text {th }}$ prefix of the sequence which ends at the $i^{\text {th }}$ term of the sequence, for all i up to the length of the sequence.
(b) Find the edit distance between two strings.

The edit distance between the $i^{\text {th }}$ prefix of the first string and the $j^{\text {th }}$ prefix of the second string, for each i up to the length of the first string and each j up to the length of the second string.
(c) Find the longest common subsequence of two sequences.

The longest common subsequence of the $i^{\text {th }}$ prefix of the first sequence and the $j^{t h}$ prefix of the second sequence, for each i up to the length of the first sequence and each j up to the length of the second sequence.
(d) Find the shortest distance between vertices s and t in a weighted acyclic directed graph. The shortest distance between s and and x, for each vertex x of the graph.
(e) The knapsack problem.

We assume that the input numbers are integers. If $x_{1}, \ldots x_{n}$ are the items and S is the size of the knapsack, then the knapsack problem for items $x_{1}, \ldots x_{i}$ and knapsack j, for each $i \leq n$ and each $j \leq S$.
(f) Find the $n^{\text {th }}$ Fibonacci number.

The $i^{\text {th }}$ Fibonacci number, for all $i \leq n$.

