Dynamic Programming

- 3. For each of the following dynamic programming problems, what would you choose the subproblems to be?
 - (a) Find the longest monotone subsequence of a sequence. The length of the longest monotone subsequence of the i^{th} prefix of the sequence which ends at the i^{th} term of the sequence, for all i up to the length of the sequence.
 - (b) Find the edit distance between two strings.

The edit distance between the i^{th} prefix of the first string and the j^{th} prefix of the second string, for each i up to the length of the first string and each j up to the length of the second string.

- (c) Find the longest common subsequence of two sequences. The longest common subsequence of the *ith* prefix of the first sequence and the *jth* prefix of the second sequence, for each *i* up to the length of the first sequence and each *j* up to the length of the second sequence.
- (d) Find the shortest distance between vertices s and t in a weighted acyclic directed graph. The shortest distance between s and and x, for each vertex x of the graph.
- (e) The knapsack problem.

We assume that the input numbers are integers. If $x_1, \ldots x_n$ are the items and S is the size of the knapsack, then the knapsack problem for items $x_1, \ldots x_i$ and knapsack j, for each $i \leq n$ and each $j \leq S$.

(f) Find the n^{th} Fibonacci number. The i^{th} Fibonacci number, for all $i \leq n$.