Johnson's Algorithm

Weighted Directed Graphs

Let $G=(V, E)$ be a directed graph. A weight function of G is a function $w: E \rightarrow \mathbb{R}$. We say the ordered pair (G, w) is a weighted graph. The shortest path problem is to find the path from x to y of smallest total weight, for $x, y \in V$, The single pair shortest path problem is to find the minimum weight path for a single pair (x, y). The single source shortest path problem is to find minimum weight paths from a specified source vertex to all vertices, while the all pairs shortest path problem is to find minimum weight paths for every choice of (x, y).

Equivalent Weightings

Two weight functions, w_{1} and w_{2} on a directed graph $G=(V, E)$ are equivalent if there is a function $h: E \rightarrow \mathbb{R}$ such that $w_{2}(x, y)=w_{1}(x, y)+h(x)-h(y)$ for all $(x, y) \in E$.

Theorem 1 If w_{1} and w_{2} are equivalent weight functions on a directed graph $G=(V, E)$, and $x, y \in V$, any shortest path from x to y in $\left(G, w_{1}\right)$ is also a shortest path from x to y in $\left(G, w_{2}\right)$.

Johnson's Algorithm

Johnson's algorithm solves the all-pairs shortest path problem for a weighted directed graph (G, w) with no negative weight cycles. Write $G=(V, E)$, let $n=|V|$ and $m=|E|$. The time complexity of Johnson's algorithm is $O(n m \log n)$, which is less than the $\Theta\left(n^{3}\right)$ time complexity of the Floyd-Warshall algorithm, provided m is small enough.

The first step of Johnson's algorithm is to create the augmented weighted directed graph, (G^{*}, w^{*}). G^{*} has one new vertex, s, and n new arcs, $\{(s, x): x \in V\}$, where $w^{*}(x, y)=(x, y)$ if $(x, y) \in E$, and $w^{*}(s, x)=0$. We then use the Bellman-Ford algorithm to run the single source shortest path problem on $\left(G^{*}, w^{*}\right)$ For all $x \in V$, let $h(x)$ be the least weight of any path in G^{*} from s to x. Since there is an arc of weight zero from s to x, we have $f(x) \leq 0$. We now define $w^{\prime}(x, y)=w(x, y)+h(x)-h(y)$, and solve the all-pairs shortest path problem on (G, w^{\prime})

Theorem $2 w^{\prime}(x, y) \geq 0$ for all $(x, y) \in E$.
Proof: Since f is the solution to the single source shortest path problem on G^{*}, we have $f(y) \leq$ $f(x)+w(x, y)$. Thus $w^{\prime}(x, y)=w(x, y)+f(x)-f(y) \geq 0$,

Since w^{\prime} is never negative, we can use Dijkstra's algorithm n times to solve the single source shortest path problem on $\left(G, w^{\prime}\right)$ using each vertex as the source, giving us the function $\operatorname{dist}^{\prime}(x, y)$
for any $x, y \in V$. We then define $\operatorname{dist}(x, y)=\operatorname{dist}^{\prime}(x, y)-f(x)+f(y)$ to obtain the solution to the original problem.

A Small Example

Let (G, w) be the weighted directed graph shown in Figure 1, where $n=7$ and $m=9$. There are no negative cycles, but there are negative arcs.
Since m is considerably less than $\frac{n^{2}}{\log n}$ we expect Johnson's algorithm to be faster than the Floyd-Warshall algorithm.

Figure 1: (G, w), a Weighted Directed Graph.

We augment G_{1} by creating a new vertex s and an arc of length zero from s to each vertex of G; these new arcs are shown in red in Figure 2. We call the resulting directed graph G^{*}. We apply the Bellman-Ford single source algorithm to G^{*}. For each vertex x of G, let $f(x)$ be the minimum weight of any path in G^{*} from S to x. The values of f are shown in red in Figure 2.

Figure 2: The Augmented Weighted Directed Graph G^{*}.

We now compute the adjusted weights, $w^{\prime}(x, y)$ for any vertices x and y. The definition of w^{\prime} is:

$$
w^{\prime}(x, y)=w(x, y)+f(x)-f(y)
$$

Let $\left(G, w^{\prime}\right)$ is a weighted directed graph with no negative weight arcs. We show the adjusted weights in Green in Figure 3.

Figure 3: Calculation of Adjusted Weights w^{\prime} on G

Figure 4: The Weighted Directed Graph $\left(G, w^{\prime}\right)$

We now run Dijkstra's algorithm on $\left(G, w^{\prime}\right) n$ times. For each run we pick one vertex of G to be the source. Each run yields a tree of shortest paths rooted at the chosen vertex, which we call the Dijkstra tree.

In Figure 5 we show the n Dikstra trees. Minimum path weight values are written in dark red.

Figure 5: Dijkstra Trees for each Choice of Source Vertex.

In Figure 6 we replace the adjusted weight by the original weight for each arc. We relabel the arcs of each Dijkstra tree. The true minimum path from x to y is unique path from x to y in the tree rooted at x. Weights of those minimum paths are shown in red.

Figure 6: Shortest Path Weights for (G, w)

	A	B	C	D	E	F	G
A	0	3	5	1	0	1	0
		A	E	B	D	E	F
B							
C							
D							
E							
F							
G							

We now write the array showing the results. The minimum weight of a path from x to y is in row x and column y. Underneath that weight is the back pointer.

Exercise: Fill in the missing information in the array.

