
Longest Monotone Subsequence

Problem: Given a sequence σ = x[1], . . . x[n], find the longest strictly monotone increasing subsequence of
σ. (The Greek letter sigma.) To simplify our notation, we write “monotone” to mean strictly monotone
increasing.

τ [t], the sequence x[1], . . . x[t]. (The Greek letter tau.) Note that σ = τ [n].
υ[t], the longest monotone subsequence of τ [t]. Defaults to 0. (The Greek letter upsilon, or ypsilon.)
U [t], the length of υ[t]
j[t] the index of the last term of υ[t]
̺[t], the longest monotone subsequence of τ [t] ending at x[t]. (The Greek letter rho.)
R[t], the length of ̺[t]. Defaults to 0.
p[t], a back pointer, the index of the second-to-last term of ̺[t]. Defaults to 0.

Here is the code:

x[0] = −∞
U [0] = 0
R[0] = 0
For all t from 1 to n

{
Pick 0 ≤ i < t such that R[i] is maximum subject to x[i] < x[t]
R[t] = R[i] + 1
p[t] = i

}
if(R[t] > U [t− 1])

{
U [t] = R[t]
j[t] = t

}
else

{
U [t] = U [t− 1]
j[t] = j[t− 1]

}

The longest monotone subsequence is found by following the back pointers starting at index j[n], and has

length U [n]. Line 6 of the code (starting with the word “Pick”) dominates the time complexity. If the

search is done linearly, the time complexity of the algorithm is O(n2). However, i can be found in O(log n)

time using binary search, yielding time complexity O(n log n).

1


