Longest Monotone Subsequence

Problem: Given a sequence $\sigma=x[1], \ldots x[n]$, find the longest strictly monotone increasing subsequence of σ. (The Greek letter sigma.) To simplify our notation, we write "monotone" to mean strictly monotone increasing.
$\tau[t]$, the sequence $x[1], \ldots x[t]$. (The Greek letter tau.) Note that $\sigma=\tau[n]$.
$v[t]$, the longest monotone subsequence of $\tau[t]$. Defaults to 0 . (The Greek letter upsilon, or ypsilon.)
$U[t]$, the length of $v[t]$
$j[t]$ the index of the last term of $v[t]$
$\varrho[t]$, the longest monotone subsequence of $\tau[t]$ ending at $x[t]$. (The Greek letter rho.)
$R[t]$, the length of $\varrho[t]$. Defaults to 0 .
$p[t]$, a back pointer, the index of the second-to-last term of $\varrho[t]$. Defaults to 0 .
Here is the code:

```
\(x[0]=-\infty\)
\(U[0]=0\)
\(R[0]=0\)
For all \(t\) from 1 to n
    \{
        Pick \(0 \leq i<t\) such that \(R[i]\) is maximum subject to \(x[i]<x[t]\)
        \(R[t]=R[i]+1\)
        \(p[t]=i\)
    \}
\(\operatorname{if}(R[t]>U[t-1])\)
    \{
        \(U[t]=R[t]\)
        \(j[t]=t\)
    \}
else
    \{
        \(U[t]=U[t-1]\)
        \(j[t]=j[t-1]\)
    \}
```

The longest monotone subsequence is found by following the back pointers starting at index $j[n]$, and has length $U[n]$. Line 6 of the code (starting with the word "Pick") dominates the time complexity. If the search is done linearly, the time complexity of the algorithm is $O\left(n^{2}\right)$. However, i can be found in $O(\log n)$ time using binary search, yielding time complexity $O(n \log n)$.

