
University of Nevada, Las Vegas Computer Science 477/677

Loop Invariants

How can you see that a program is correct? For some simple programs, that is obvious. For others, not so

much.

One technique to prove correctness is the use of loop invariants. A loop invariant is for a particular loop.

For simple loops, the loop invariant is something that you understand unconciously while you’re writing the

program. Here’s an example.

int total = 0;

for(int i = 1; i < n; i++)

total = total + i*i;

The loop invariant is the English sentence, “total is the sum of the squares of the first i integers.” It is

easier to discuss loop invariants if we stick to while loops. So we rewrite the code:

int total = 0;

int i = 0;

// HERE

while(i < N)

{

// HERE

i++;

// But not HERE

total = total + i*i;

// HERE

}

// HERE

cout << total << endl;

The loop invariant is, the statement, “total is the sum of the squares of the first i integers.” The invariant

is always a 0/1 statement, that is, a statement which is either true or false. Here are the rules for a loop

invariant:

1. The invariant is true before the first iteration.

2. If the invariant is true at the beginning of an iteration, it is true at the end of that iteration.

It follows that the invariant must be true after the last iteration of the loop.

The goal of this program is to write the sum of the squares of the first N integers. I’m sure you agree that

the program is obviously correct, but let’s prove it anyway.

Condition 1 is clearly true, since both i and total are zero. We now prove condition 2:

Suppose total = 12 +22 + · · ·+ i2 at the beginning of an iteration. The value of i changes during the loop,

let the new value be i′ = i + 1, and let total’ be the new value of total. We need only show that total’ =



12 + 22 + · · · + (i + 1)2, because that is the loop invariant after i and total have been changed. We see that

total’ = total + (i+ 1)2 = 12 + 22 + · · ·+ i2 + (i+ 1)2, and so the loop invariant holds. At the end of the last

iteration, i = N, and the loop invariant holds, which implies that total is the sum of the squares of the first N

integers.

That was so easy it was trivial. Let’s look at a harder example.

float multiply(float x, int b)

{

assert(b >= 0);

float rslt = 0;

float y = x;

int a = b;

while(a > 0)

{

if(a%2) rslt = rslt + y;

y = 2*y;

a = a/2;

}

return rslt;

}

The loop invariant is the equation: x ∗ b = rslt+ y ∗ a

Before the first iteration, the loop invariant is true since y = x, a = b, and rslt = 0. Can you show that

Condition 2 holds for this loop? If so, after the last iteration, x ∗ b = rslt since a = 0. This gives a proof that

the function returns the product of its two parameters.

I claim that every loop in any practical program has a loop invariant, although it’s usually not written

down. Can you find the loop invariant for the loop in the function mystery in the second homework?

2



Recurrence and Complexity

The Generalized Master Theorem We now solve the recurrence

F (n) =

n
∑

i=1

αiF (βin) + nγ

where the αi, βi, and γ are constants. With the restriction that αi > 0 and 0 < βi < 1 for each i. The master

theorem is a special case of the generalized master theorem, where n = 1, α = A, β = 1/B and γ = C.

The rules are as folows.

1. Find the real number d such that
∑n

i=1
αiβ

d
i = 1. If the value of d is not obvious, it can be approximated

by binary search, as follows.

(a) Estimate the value of d.

(b) Compute
∑n

i=1
αiβ

d
i .

(c) If that total is less than 1, pick a smaller d. If it is greater than 1, pick a larger d.

(d) Repeat.

Then F (n) = Θ

















nγ if d < γ

nγ log n if d = γ

nd if d > γ







Examples.

1. F (n) = F (3n/5) + F (4n/5) + n

Here α1 = α2 = 1, β1 = 3/5, β2 = 4/5, and γ = 1. We can compute d = 2, since (3/5)2 + (4/5)2 = 1.

Thus F (n) = Θ(n2) (The third case.)

2. F (n) = F (3n/5) + F (4n/5) + n2 αi and βi are the same as in the previous example, and d = 2. But

γ = 2 = d, thus F (n) = Θ(n2 log n) (The second case.)

3. This recurrence comes up in analysis of the median of medians algorithm, which we will learn this

semester:

T (n) ≤ F (n/5) + F (7n/10) + Θ(n).

Then α1 = α2 = 1, β1 = 1/5, β2 = 7/10, and γ = 1. d is some hideous irrational number, but we don’t

need to know it. Since α1β
γ
1
+ α2β

γ
2
= 9/10 which is less than 1, we know that d < γ. Hence (The first

case) T (n) = Θ(n).

4. F (n) = F (2n/3) + 5F (n/3) + n

(2/3)2 + 5(1/3)2 = 1, thus d = 2, and F (n) = Θ(n2) (Third case.)

3


