1. True or False. Write “O” if the answer is not known to science at this time. [5 points each]

 (a) _______ There is a polynomial time algorithm for finding the factors of any integer written as a base ten numeral.

 (b) _______ Planar graphs are sparse.

 (c) _______ Tree graphs are sparse.

 (d) _______ Acyclic directed graphs are sparse.

2. Fill in the blanks.

 (a) [5 points] If a planar graph G has 5 vertices, then the number of edges of G cannot be more than ___________. (You must give the best possible answer, exactly. No partial credit.)

 (b) [5 points] The height of a binary tree with 10 nodes is at least ___________. (You must give the best possible answer, exactly. No partial credit.)

 (c) [5 points] A directed graph has a topological order if and only if it is ___________.

 (d) [15 points] ___________ ___________ and ___________ are three examples of priority queues.

 (e) [5 points] The operators of the ADT ___________ are pop and push.

 (f) [5 points] The operators of the ADT ___________ are fetch and store.

 (g) [10 points] In order to solve a shortest path problem on a weighted directed graph, there must be no ___________ ___________ (2 words)

 (h) [10 points] The following is pseudo-code for what algorithm?

 int x[n];

 obtain values of x;

 for(int i = 0; i < n; i++)

 for(int j = i+1; j < n; j++)

 if(x[i] > x[j])

 swap(x[i],x[j]);

 (i) [10 points] The asymptotic time complexity of Johnson’s algorithm on a weighted directed graph of n vertices and m arcs is _________________. (Your answer should use O notation.)

 (j) [5 points] The time complexity of every comparison-based sorting algorithm is _______________. (Your answer should use Ω notation.)

 (k) [10 points] The postfix expression $xy + xz - *$ is equivalent to the infix expression ________________.
(l) [10 points] The items stored in a priority queue (that includes stacks, queues, and heaps) represent ________________ ________________ (2 words)

(m) [10 points] Name two divide-and-conquer sorting algorithms.

3. Give the asymptotic complexity, in terms of n, of each of the following code fragments. [10 points each]

(a) for(i = 0; i < n; i = i+1);
 cout << "Hi!" << endl;

(b) for(int i = n; i > 1; i = i/2)
 cout << "hello world" << endl;

(c) for(int i = 1; i < n; i++)
 for(int j = 1; j < i; j = 2*j)
 cout << "hello world" << endl;

(d) for(int i = 1; i < n; i++)
 for(int j = i; j < n; j = 2*j)
 cout << "hello world" << endl;

(e) for(int i = 2; i < n; i = i*i)
 cout << "hello world" << endl;

(f) for(i = 1; i < n; i = 2*i);
 cout << "Hi!" << endl;

(g) for(int i = n; i > 1; i = sqrt(i));
 cout << "Hi!" << endl;

4. For each of these recursive functions, write, and then solve, an appropriate recurrence. [10 points each]
(a) int f(int n)
 {
 if (n < 2) return 1;
 else return f(n-1)+f(n-1);
 }
(b) void g(int n)
 {
 if(n >= 1)
 {
 for(int i = 1; i < n; i++)
 cout << "Hi!" << endl;
 g(n/3);
 g(n/3);
 g(n/3);
 }
 }

5. Solve the recurrences. Give the asymptotic value of $F(n)$ using either O, Ω, or Θ, whichever is most appropriate. [10 points each]

(a) $F(n) = 2F\left(\frac{n}{2}\right) + n$

(b) $F(n) \geq 4F\left(\frac{n}{2}\right) + n^2$

c) $F(n) = F(n - 1) + \frac{n}{4}$

(d) $F(n) \leq F\left(\frac{n}{2}\right) + F\left(\frac{n}{4}\right) + F\left(\frac{n}{8}\right) + n$

e) $F(n) = F\left(n - \sqrt{n}\right) + \sqrt{n}$

(f) $F(n) = F(\log n) + 1$

(g) $T(n) < T(n - 2) + n^2$
(h) \(F(n) \geq F(\sqrt{n}) + \lg n \)

(i) \(G(n) \geq G(n-1) + n \)

(j) \(F(n) = 4F(n/2) + n^2 \).

(k) \(F(n) \leq 2F(\sqrt{n}) + O(\log n) \).

(l) \(K(n) = K(n-\sqrt{n}) + 1 \).

(m) \(F(n) = 4F(\frac{3n}{4}) + n^5 \) (No, you don’t need a calculator.)

(n) \(F(n) = F(n/2) + 1 \)

(o) \(F(n) = F(n-1) + O(\log n) \)

(p) \(F(n) = F\left(\frac{n}{2}\right) + 2F\left(\frac{n}{4}\right) + n \)

(q) \(F(n) = F\left(\frac{3n}{5}\right) + F\left(\frac{4n}{5}\right) + n^2 \)

(r) \(F(n) = F(n-2) + n \)
6. [20 points] Use dynamic programming to compute the length of the longest common subsequence of the strings “011011001” and “1010011001.” Show the matrix.

7. [20 points] Use dynamic programming to compute the Levenshtein distance between the strings “kitchen” and “chicken.” Show the matrix.

8. [20 points] Describe a dynamic programming algorithm to compute the maximum sum of any contiguous subsequence of a given sequence of numbers. For example, if the given sequence is

 2, 1, 4, -6, -3, 7, -1, 2

 that sum is 6 + (-3) + 7 + (-1) + 2 = 11. (There is a Θ(n)-time algorithm.)
9. Use Huffman's algorithm to construct an optimal prefix code for the alphabet \{A, B, C, D, E, F\} where the frequencies of the symbols are given by the following table.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
</tbody>
</table>

11. [20 points] What does the following recursive function do? Hint: it is important for cryptography.

```c
int f(int m, int n, int e)
{
    assert(m > 0 and n > 0 and e >= 0);
    if(e == 0) return 1;
    else if(e%2) return f(m,n,e-1)*m%n;
    else
    {
        temp = f(m,n,e/2);
        return temp*temp%n;
    }
}
```
12. [20 points] The usual recurrence for Fibonacci numbers is:
\[F[n] = F[n - 1] \text{ for } n > 2 \]

However, there is more efficient recurrence:
\[F[n] = F\left\lfloor \frac{n-1}{2} \right\rfloor \times F\left\lfloor \frac{n}{2} \right\rfloor + F\left\lfloor \frac{n+1}{2} \right\rfloor \times F\left\lfloor \frac{n+2}{2} \right\rfloor \text{ for } n > 2 \]
where integer division is truncated as in C++.

Using that recurrence, describe a \(\Theta(\log n) \)-time memoization algorithm which reads a value of \(n \) and computes \(F[n] \), but computes only \(O(\log n) \) intermediate values.

13. [20 points] Describe a randomized algorithm which finds the \(k^{\text{th}} \) smallest element of an unsorted list of \(n \) distinct numbers, for a given \(k \leq n \), in \(O(n) \) expected time. (By “distinct,” I mean that no two numbers in the list are equal.)

16. [20 points] Describe, in a very informal way, an \(O(\log n)\) time algorithm which computes the median of two sorted lists of length \(n\).
17. [20 points] State Hall’s Marriage Theorem.

18. [20 points] Use Dijkstra’s algorithm to solve the single source shortest path problem for the following weighted directed graph, where s is the source. Show the steps.
19. [20 points] Find the strong components of the following graph, using DFS search. (If you find a better algorithm than the one I showed you in class, you may use that instead.) Circle the strong components.

![Graph Image]

20. [20 points] Show the minimum spanning tree of the following weighted graph. Show the evolution of the union-find structure.

![Graph Image]
21. Consider the function george computed by the following recursive function.

```c
int george(int n)
{
    if(n <= 6) return 1;
    else return george(n/2)+george(n/2+1)+george(n/2+2)+george(n/2+3)+n*n;
}
```

(a) [10 points] What is the asymptotic complexity of george(n), in terms of \(n \)? Use \(\Theta \) notation.

(b) [10 points] What is the asymptotic time complexity of the recursive code, in terms of \(n \)? Use \(\Theta \) notation.

(c) [10 points] What is the asymptotic time complexity, in terms of \(n \), of a dynamic program algorithm which computes george(i) for all i up to \(n \)? Use \(\Theta \) notation.

(d) [20 points] What is the asymptotic time complexity, in terms of \(n \), of a memoization algorithm which computes george(n)? Use \(\Theta \) notation.