CSC 456/656 Fall 2021 Practice for the Third Examination November 17, 2021

The entire practice test is 590 points. The real test will be shorter. Report any errors immediately.

1. True or False. $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known science at this time.
(i) \mathbf{F} Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
(ii) \mathbf{T} The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free.
(iii) \mathbf{F} The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is context-free.
(iv) \mathbf{T} The language $\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$ is context-free.
(v) \mathbf{T} The intersection of any three regular languages is regular.
(vi) \mathbf{T} The intersection of any regular language with any context-free language is context-free.
(vii) \mathbf{F} The intersection of any two context-free languages is context-free.
(viii) \mathbf{T} If L is a context-free language over an alphabet with just one symbol, then L is regular.
(ix) \mathbf{F} There is a deterministic parser for any context-free grammar.
(x) \mathbf{T} The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.
(xi) T Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
(xii) \mathbf{T} The problem of whether a given string is generated by a given context-free grammar is decidable.
(xiii) \mathbf{T} If G is a context-free grammar, the question of whether $L(G)=\emptyset$ is decidable.
(xiv) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
(xv) T The language $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 0\right\}$ is recursive.
(xvi) \mathbf{T} The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is in the class \mathcal{P}-Time.
(xvii) \mathbf{O} There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
(xviii) \mathbf{F} Every undecidable problem is $\mathcal{N} \mathcal{P}$-complete.
(xix) F Every problem that can be mathematically defined has an algorithmic solution.
(xx) \mathbf{F} The intersection of two undecidable languages is always undecidable.
(xxi) \mathbf{T} Every $\mathcal{N} \mathcal{P}$ language is decidable.
(xxii) \mathbf{T} The clique problem is $\mathcal{N} \mathcal{P}$-complete.
(xxiii) \mathbf{T} The traveling salesman problem is $\mathcal{N} \mathcal{P}$-hard.
(xxiv) T The intersection of two $\mathcal{N P}$ languages must be $\mathcal{N P}$.
(xxv) F If L_{1} and L_{2} are $\mathcal{N} \mathcal{P}$-complete languages and $L_{1} \cap L_{2}$ is not empty, then $L_{1} \cap L_{2}$ must be $\mathcal{N} \mathcal{P}$-complete.
(xxvi) O There exists a \mathcal{P}-TIME algorithm which finds a maximum independent set in any graph G.
(xxvii) T There exists a \mathcal{P}-TIME algorithm which finds a maximum independent set in any acyclic graph G.
(xxviii) $\mathbf{O} \mathcal{N C}=\mathcal{P}$.
(xxix) $\mathbf{O} \mathcal{P}=\mathcal{N} \mathcal{P}$.
(xxx) $\mathbf{O} \mathcal{N} \mathcal{P}=\mathcal{P}$-SPACE
(xxxi) $\mathbf{O} \mathcal{P}$-Space $=$ EXP-time
(xxxii) O EXP-time $=$ EXP-sPACE
(xxxiii) \mathbf{F} EXP-time $=\mathcal{P}$-time.

By the time hierachy theorem.
(xxxiv) \mathbf{F} EXP-space $=\mathcal{P}$-space.

By the space hierachy theorem.
(xxxv) T The traveling salesman problem (TSP) is $\mathcal{N} \mathcal{P}$-complete.
(xxxvi) T The knapsack problem is $\mathcal{N} \mathcal{P}$-complete.
(xxxvii) \mathbf{T} The language consisting of all satisfiable Boolean expressions is $\mathcal{N P}$-complete.
(xxxviii) T The Boolean Circuit Problem is in \mathcal{P}.
(xxxix) \mathbf{O} The Boolean Circuit Problem is in $\mathcal{N C}$.
(xl) \mathbf{F} If L_{1} and L_{2} are undecidable langugages, there must be a recursive reduction of L_{1} to L_{2}.
(xli) \mathbf{T} The language consisting of all strings over $\{a, b\}$ which have more a 's than b 's is $\operatorname{LR}(1)$.
(xlii) T 2-SAT is \mathcal{P}-time.
(xliii) O 3-SAT is \mathcal{P}-Time.
(xliv) T Primality is \mathcal{P}-time.
(xlv) \mathbf{T} There is a \mathcal{P}-TIME reduction of the halting problem to 3 -SAT.
(xlvi) T Every context-free language is in \mathcal{P}.
(xlvii) \mathbf{T} Every context-free language is in $\mathcal{N C}$.
(xlviii) \mathbf{T} Addition of binary numerals is in $\mathcal{N C}$.
(xlix) F Every context-sensitive language is in \mathcal{P}.
(l) F Every language generated by a general grammar is recursive.
(li) \mathbf{F} The problem of whether two given context-free grammars generate the same language is decidable.
(lii) \mathbf{F} If G is a context-free grammar, the question of whether $L(G)=\Sigma^{*}$ is decidable, where Σ is the terminal alphabet of G.
(liii) \mathbf{T} The language of all fractions (using base 10 numeration) whose values are less than π is decidable. (A fraction is a string. " $314 / 100$ " is in the language, but " $22 / 7$ " is not.)
(liv) \mathbf{T} There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a unary ("caveman") numeral.
(lv) T For any two languages L_{1} and L_{2}, if L_{1} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{2} must be undecidable.
(lvi) F For any two languages L_{1} and L_{2}, if L_{2} is undecidable and there is a recursive reduction of L_{1} to L_{2}, then L_{1} must be undecidable.
(lvii) \mathbf{F} If P is a mathematical proposition that can be written using a string of length n, and P has a proof, then P must have a proof whose length is $O\left(2^{2^{n}}\right)$.
(lviii) \mathbf{T} If L is any $\mathcal{N} \mathcal{P}$ language, there must be a \mathcal{P}-TIME reduction of L to the partition problem.
(lix) F Every bounded function is recursive.
(lx) O If L is $\mathcal{N P}$ and also co- $\mathcal{N} \mathcal{P}$, then L must be \mathcal{P}.
(lxi) \mathbf{T} If L is in $\mathcal{R E}$ and also in co- $\mathcal{R E}$, then L must be decidable.
(lxii) \mathbf{T} Every language is enumerable.
(lxiii) F If a language L is undecidable, then there can be no machine that enumerates $L . \mathbf{F}$
(lxiv) \mathbf{T} There exists a mathematical proposition that can be neither proved nor disproved.
(lxv) \mathbf{T} There is a non-recursive function which grows faster than any recursive function.
(lxvi) \mathbf{T} There exists a machine that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).
(lxvii) F For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
(lxviii) O Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size, is $\mathcal{N} \mathcal{P}$-complete.
(lxix) \mathbf{O} There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
(lxx) O If two regular expressions are equivalent, there must be a polynomial time proof that they are equivalent.
(lxxi) F Every subset of a regular language is regular.
(lxxii) $\mathbf{O} \mathcal{P}=\mathcal{N} \mathcal{P}$
(lxxiii) $\mathbf{O} \mathcal{P}=\mathcal{N C}$
(lxxiv) F Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a 's than b 's and more b 's than c 's. There is some PDA that accepts L.
(lxxv) T Every subset of any enumerable set is enumerable.
(lxxvi) \mathbf{T} If L is a context-free language which contains the empty string, then $L \backslash\{\lambda\}$ must be context-free.
(lxxvii) \qquad If L is any language, there is a reduction of L to the halting problem. (Warning: this is a trick question. Give it some serious thought.)
(lxxviii) \mathbf{T} The computer language $\mathrm{C}++$ has Turing power.
(lxxix) \mathbf{T} Let Σ be the binary alphabet. Every $w \in \Sigma^{*}$ which starts with 1 is a binary numeral for a positive integer. Let $S q: \Sigma^{*} \rightarrow \Sigma *$ be a function which maps the binary numeral for any integer n to the binary numeral for n^{2}. Then $S q$ is an $\mathcal{N C}$ function.
(lxxx) \mathbf{T} If L is any \mathcal{P}-Time language, there is an $\mathcal{N C}$ reduction of the Boolean circuit problem to L.
(lxxxi) T If an abstract Pascal machine can perform a computation in polynomial time, there must be some Turing machine that can perform the same computation in polynomial time.
(lxxxii) \mathbf{T} The binary integer factorization problem is co- $\mathcal{N} \mathcal{P}$.
(lxxxiii) \mathbf{F} Let L be any $\mathcal{R E}$ language which is not decidable, and let M_{L} be a machine which accepts L.
(a) If there are no strings of L of length n, let $T(n)=0$.
(b) Otherwise, let $T(n)$ be the largest number of steps it takes M_{L} to accept any string in L of length n.
Then T is a recursive function.
(lxxxiv) \mathbf{O} There is a polynomial time reduction of the subset sum problem to the binary factorization problem.
(lxxxv) \mathbf{F} The language of all palindromes over $\{a, b\}$ is an LR language.
(lxxxvi) F The Simplex algorithm for linear programming is polynomial time.
(lxxxvii) F Remember what a fraction is? It's a string consisting of a decimal numberal, followed by a slash, followed by another decimal numeral whose value is not zero. For example, the string " $14 / 37$ " is a
fraction. Each fraction has a value, which is a number. For example, " $2 / 4$ " and " $1 / 2$ " are different fractions, but has the same value. For any real number x, the set of fractions whose values are less than x is $\mathcal{R E}$.
(lxxxviii) \mathbf{F} The union of any two deterministic context-free languages must be a DCFL.
(lxxxix) \mathbf{F} The intersection of any two deterministic context-free languages must be a DCFL.
(xc) \mathbf{F} The complement of any DCFL must be a DCFL.
(xci) F Every DCFL is generated by an LR grammar.
(xcii) \mathbf{T} The membership problem for a DCFL is in the class \mathcal{P}-TIME.
(xciii) T If $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ is a function, $L_{1} \in \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}, h\left(L_{1}\right)=L_{2}$ and L_{1} is regular, then L_{2} must be regular.
(xciv) \mathbf{F} If $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ is a function, $L_{1} \in \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}, h\left(L_{1}\right)=L_{2}$ and L_{2} is regular, then L_{1} must be regular.
(xcv) T If $h: \Sigma_{1} \rightarrow \Sigma_{2}^{*}$ is a function, $L_{1} \in \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}, L_{1}=h^{-1}\left(L_{2}\right)$ and L_{2} is regular, then L_{1} must be regular.
2. (10 points each) For each language or problem listed below, fill in the blank with a letter from A to G, where each letter has the following meaning:
A: Known to be $\mathcal{N C}$.
B: Known to be \mathcal{P}-time but not known to be $\mathcal{N C}$.
C: Known to be $\mathcal{N} \mathcal{P}$, but not known to be \mathcal{P}-Time, and not known to be $\mathcal{N} \mathcal{P}$-complete.
D: Known to be $\mathcal{N} \mathcal{P}$-complete.
E: Known to be \mathcal{P}-space, but not known to be $\mathcal{N} \mathcal{P}$.
F: Known to be decidable, but not known to be \mathcal{P}-SPACE
G: Undecidable.
(i) A The Dyck language.
(ii) \mathbf{B} The Boolean Circuit problem.
(iii) \mathbf{E} Equivalence of NFAs.
(iv) D Block Sorting.
(v) A The language $\left\{a^{n} b^{n} c^{n}: n>0\right\}$.
(vi) C Factoring integers expressed as decimal numerals.
(vii) A Multiplication of binary numerals.
(viii) F All checkers positions where Black can force a win.
3.)10 points each) For each language or problem listed below, fill in the blank with a letter from H to L , where each letter has the following meaning:

H: Decidable.
I: $\mathcal{R E}$ but not decidable.
K: co- $\mathcal{R E}$ but not decidable.
L: Neither $\mathcal{R E}$ nor co- $\mathcal{R E}$.
(i) I The halting problem.
(ii) \mathbf{K} The diagonal language.
(iii) I The complement of the diagonal language.
(iv) \mathbf{H} The subset sum problem.
(v) K Equivalence of context-free grammars.
(vi) H Rush Hour (the sliding block puzzle).
4. [20 points] Design an LALR praser for the following context-free grammar where S is the start symbol and the alphabet of terminals is $\{a, b\}$. I have filled in a few entries.

1. $S \rightarrow a_{2} S_{3} b_{4} S_{5}$
2. $S \rightarrow \lambda$

	a	b	$\$$	S
0	$s 2$			1
1			HALT	
2	$s 2$	$r 2$		3
3		$s 4$		
4	$s 2$	$r 2$	$r 2$	5
5		$r 1$	$r 1$	

5. [20 points] Give a \mathcal{P}-TIME reduction of the subset sum problem to the partition problem.

Let $\left(K, x_{1}, \ldots x_{n}\right)$ be an instance of the subset sum problem. Let $S=x_{1}+\cdots x_{n}$. The reduction of that instance is $\left(K+1, S-K+1, x_{1}, \ldots x_{n}\right)$, and instance of the partition problem.
6. [20 points] State the pumping lemma for context-free languages.

For any context-free language L there exists a positive integer p such that for any $w \in L$ where $|w| \in L$ there exist strings u, v, x, y, z such that the following four conditions hold:

1. $w=u v x y z$,
2. $|v x y| \leq p$,
3. v and y are not both the empty string,
4. For any integer $i \geq 0, u v^{i} x y^{i} z \in L$.
5. [20 points] Suppose there is a machine that enumerates a language in canonical order. Prove that L is decidable.

If L is finite, it is clearly decidable. If L is infinite, let w_{1}, w_{2}, \ldots be a canonical order enumeration of L. The following program accepts L.
read w
$n=|w|$
for i from 1 to 2^{n+1}
$\operatorname{if}\left(w==w_{i}\right)$
Accept w and Halt
Reject w
8. [20 points]

Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below.
$S \rightarrow I S$
$S \rightarrow X Y$
$S \rightarrow W S$
$S \rightarrow a$
$X \rightarrow I S$
$Y \rightarrow E S$
$W \rightarrow w$
$I \rightarrow i$
$E \rightarrow e$

Use the CYK algorithm to prove that the string iwiaea is a member of L. Use the figure below for your work.

