Solutions to Recurrences

Introduction

A recurrence is a definition of values of a function in terms of previous values of the function. To be complete, a definition of a function using a recurrence must have a non-recursive branch. However, if the object is to express the value of the function asymptotically, the non-recursive branch may not be necessary, as in the examples we give here.

In most of our examples, the solution is expressed in Θ notation, but sometimes we need to write O or Ω.

Anti-Derivative Method

The derivative f^{\prime} of a real-valued function f is defined as fillows: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{h}$
In asymptotic analysis, we only need h to be "close" to zero. How close? A general rule is that h must be asymptotically smaller than x.

1. $F(n)=F(n-1)+n$ We can write $\frac{F(n)-F(n-1)}{1}=n$

1 is close to zero, so we have $F^{\prime}(n)=\Theta(n)$, from which we obtain hence $F(n)=\Theta\left(n^{2}\right)$.
2. $F(n)=F(n-\sqrt{ } n)+n$ We can write $\frac{F(n)-F(n-\sqrt{ } n)}{\sqrt{ } n}=\frac{n}{\sqrt{ } n}$
$\sqrt{ } n$ is close enough to zero that the left-hand-side is asymptotically the derivative of F.
We have $F^{\prime}(n)=\Theta(\sqrt{ } n)$ Taking the anti-derivative, we obtain $F(n)=\Theta\left(n^{3 / 2}\right)$

The Master Theorem

If we have the recurrence $F(n)=A F(n / B)+n^{C}$ where A, B, and C are constants, where $A>0, B>1$, and $C \geq 0$

$$
F(n)=\left\{\begin{array}{l}
\Theta\left(n^{C} \text { if } B^{C}>A\right. \\
\Theta\left(n^{C} \log n\right) \text { if } B^{C}=A \\
\Theta\left(n^{\log _{B} A}\right) \text { if } B^{C}<A
\end{array}\right.
$$

3. $F(n)=F(n / 2)+1$
$A=1, B=2$, and $C=0$, and $B^{C}=A$. Thus $F(n)=\Theta\left(n^{C} \log n\right)=\Theta\left(n^{0} \log n\right)=\Theta(\log n)$.
4. $F(n)=2 F(n / 2)+n$

This is one of the most commonly occuring recurrences. $A=2, B=2$, and $C=1$. Thus $B^{C}=A$.
We obtain $F(n)=\Theta(n \log n)$.
5. $F(n)=2 F(n / 2)+1$
$A=2, B=2$, and $C=0 . B^{C}<A . \log _{2} 2=1$, and $n^{1}=n$. Thus $F(n)=\Theta(n)$.
6. $F(n)=2 F(n / 2)+n^{2}$ $A=2, B=2$, and $C=2 . B^{C}>A$. Thus $F(n)=\Theta\left(n^{C}\right)=\Theta\left(n^{2}\right)$.

The Generalized Master Theorem

We change the notation to Greek letters, changing A to $\alpha, 1 / B$ to β, and C to γ, for example. The recurrence $F(n)=A F(n / B)+n^{C}$ is now written $F(n)=\alpha F(\beta n)+n^{\gamma}$.

In the generalized master theorem, we allow multiple terms on the right hand side, each with its own α_{i} and β_{i}. The general form of the recurrence is

$$
F(n)=\alpha_{1} F\left(\beta_{1} n\right)+\alpha_{2} F\left(\beta_{2} n\right)+\cdots+\alpha_{k} F\left(\beta_{k} n\right)+n^{\gamma}
$$

To solve the recurrence, we first compute $\Gamma=\sum_{i=1}^{k} \alpha_{i} \beta_{i}^{\gamma}$ If $\Gamma=1$, then $F(n)=\Theta\left(n^{\gamma} \log n\right)$. If $\Gamma<1$, then $F(n)=\Theta\left(n^{\gamma}\right)$. The hard case is $\Gamma>1$. We need to find a constant δ such that $\sum_{i=1}^{k} \alpha_{i} \beta_{i}^{\delta}=1$. Then $F(n)=\Theta\left(n^{\delta}\right)$.
7. The following recurrence gives the time complexity of the BFPRT algorithm, also known as the "median of medians" algorithm for selecting the $k^{\text {th }}$ smallest item in an array. $F(n) \leq 2 F(n / 5)+$ $F(n / 2)+n$
$k=2, \alpha_{1}=2, \beta_{1}=\frac{1}{5}, \alpha_{2}=1, \beta_{2}=\frac{1}{2}$, and $\gamma=1$.
$\Gamma=2 \frac{1}{5}+\frac{1}{2}=\frac{9}{10}<1$. Thus $F(n)=O\left(n^{\gamma}\right)=O(n)$. However, for other reasons, the complexity is actually $\Theta(n)$.
8. $F(n)=F(n / 3)+F(n / 6)+F(n / 2)+n$
$k=3, \alpha_{1}=1, \beta_{1}=\frac{1}{3}, \alpha_{2}=1, \beta_{2}=\frac{1}{6}, \alpha_{3}=1, \beta_{3}=\frac{1}{2}, \gamma=1$.
$\Gamma=\frac{1}{3}+\frac{1}{6}+\frac{1}{2}=1$. Thus $F(n)=\Theta\left(n^{\gamma} \log n\right)=\Theta(n \log n)$.
9. $F(n)=F(3 n / 5)+F(4 n / 5)+n^{2}$
$k=2, \alpha_{1}=1, \beta_{1}=\frac{3}{5}, \alpha_{2}=1, \beta_{2}=\frac{4}{5}, \gamma=2$.
$\Gamma=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=1$. Thus $F(n)=\Theta\left(n^{\gamma} \log n\right)=\Theta\left(n^{2} \log n\right)$.
10. $F(n)=2 F(2 n / 3)+F(n / 3)+n$
$k=2, \alpha_{1}=2, \beta_{1}=\frac{2}{3}, \alpha_{2}=1, \beta_{2}=\frac{1}{3} . \gamma=1$.
$\Gamma=2\left(\frac{2}{3}\right)+\frac{1}{3}=\frac{5}{3}>1$. Therefore, we must find δ such that $2\left(\frac{2}{3}\right)^{\delta}+\left(\frac{1}{3}\right)^{\delta}=1$. The correct value is $\delta=2$. Thus $F(n)=\Theta\left(n^{2}\right)$.

Substitution

We can sometimes use substitution to transform a recurrence into one which we can solve using one of the above methods.
11. $F(n)=F(\sqrt{ } n)+1$

Define a new function G by letting $G(m)=F\left(2^{m}\right)$ for any m. Now, let $m=\log _{2} n$, hence $G(m)=$ $F(n)$ and $F(n)=G\left(\log _{2} n\right)$, which implies that $F(\sqrt{ } n)=G\left(\log _{2}(\sqrt{ } n)\right)=G\left(\frac{1}{2} \log _{2} n=G(m / 2)\right.$. Substituting in the original recurrence, we obtain $G(m)=G(m / 2)+1$. From Example 3 above, we have $G(m)=\Theta(\log m)$, hence $F(n)=G(m)=\Theta(\log m)=\Theta(\log \log n)$.
12. $F(n)=2 F(\sqrt{ } n)+\log n$

We use the same substitution as in the previous problem, namely $m=\log _{2} n$ and $G(m)=F(n)$ We obtain $G(m)=2 G(m / 2)+m$. By Example 4, we have $G(m)=\Theta(m \log m)=\Theta(\log n \log \log n)$.
13. $F(n)=2 F(n-1)+1$

You can problably immediately guess that the solution is exponential. We can obtain the solution by substitution: We define $G(m)=F\left(\log _{2} m\right)$. Let $m=2^{n}$ equivalently, $n=\log _{2} m$. Thus $F(n)=$ $G\left(2^{n}\right)=G(m)$ and $F(n-1)=G\left(2^{n-1}\right)=G\left(2^{n} / 2\right)=G(m / 2)$. Substituting in the original recurrence we have: $G(m)=2 G(m / 2)+1$ From Example 5 we have $G(m)=\Theta(m)$. Thus $F(n)=G(m)=$ $\Theta(m)=\Theta\left(2^{n}\right)$.

More Generalizations of the Master Theorem

There are other, even more sophisticated, generalizations of the master theorem. You can find these on the internet, for example, in Wikipedia.

Other

14. $F(n)=F(\log n)+1$

The function $\log ^{*} x$, the so-called iterated logarithm, is defined recursively, as follows:

$$
\log ^{*} x=\left\{\begin{array}{l}
0 \text { if } x \leq 1 \\
1+\log ^{*}(\log x) \text { otherwise }
\end{array}\right.
$$

The solution to our recurrence is then $F(n)=\Theta\left(\log ^{*} n\right)$. Think of $\log ^{*} x$ this way. Enter x onto your calculator. If $x \leq 1$, then $\log ^{*} x$ is zero. Otherwise, push the \log button on your calculator until you see a number which is less than or equal to 1 . The number of times you pushed that button is $\log ^{*} x$. What is $\log ^{*}$ of the number of atoms in the known universe?

I have given you a few easy-to-understand methods, which are sufficient to solve many practical recurrences. But there are recurrences whose solution requires more advanced methods, and some which have no closed form solution.

