Sorting

1 Introduction

The sorting problem is: given a sequence of n items from an ordered domain, permute the items into an increasing sequence. Duplicates are permitted, so $2,3,3,5,6$ is an increasing sequence. A sorting algorithm is called coparison-based if each branch point of the algorithm is a comparison between two of the original items. If \mathcal{A} is any comparison-based algorithm for sorting a sequence of length n, the number of comparisons during an execution of \mathcal{A} is at least $\log _{2} n!\approx n \log _{2} n$ in the worst case. ${ }^{1}$

For each of the sorting algorithm described below, we assume that we are given a sequence $x_{1}, x_{2}, \ldots x_{n}$.

2 Selection Sort

Let \mathcal{X} be the set $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$. Pseudocode for selection sort:
For each i from 1 to n
Let y_{i} be the smallest member of \mathcal{X}. (Search step)
Delete y_{i} from \mathcal{X}.
The sequence $y_{1}, y_{2}, \ldots y_{n}$ is the output. The time complexity of selection sort depends on how the search step is implemented. If linear search is used, selection sort takes $O\left(n^{2}\right)$ time.

3 Insertion Sort

The traditional version is to maintain an ordered array A, which is initially empty. Here is the pseudocode:
For each i from 1 to n
Insert x_{i} into $A=\left\{a_{j}\right\}$ such that A remains ordered.
A is the output.
Insertion of an item into an ordered array takes linear time. To insert an item x, traverse A until you find an element $a_{j} \geq x$. Then:
For all $k \geq i$ in reverse order

$$
a_{k+1}=a_{k}
$$

$a_{j}=x$
This version of selection sort takes $O\left(n^{2}\right)$ time.

[^0]
4 Mergesort

Mergesort and quicksort are the two standard divide-and-conquer sorting algorithms. For each of these, the data are divided into two smaller sequences, each of which is (recursively) sorted; the two sorted sequences are then combined.

4.1 Merging

Suppose $\mathcal{X}=x_{1}, \ldots x_{n}$ and $\mathcal{Y}=y_{1}, \ldots y_{m}$ are ordered. We merge \mathcal{X} and \mathcal{Y} into an ordered sequence $\mathcal{Z}=z_{1} \ldots z_{n+m}$ as follows:
$i=1$
$j=1$
For k from 1 to $n+m$
While $i \leq n$ and $j \leq m$
If $x_{i}<y_{j}$

$$
z_{k}=x_{i}
$$

$i++$
Else

$$
z_{k}=y_{j}
$$

$$
j++
$$

$$
k++
$$

If $j=m+1$ copy the remaining items of \mathcal{X} into \mathcal{Z}
Else copy the remaining items of \mathcal{Y} into \mathcal{Z}
\mathcal{Z} is the output.
We now give the pseudocode for mergesort of $\mathcal{X}=x_{1}, \ldots x_{n}$:
If $n=1, \mathcal{X}$ is already sorted and we are done.
Else

$$
\mathcal{X}_{1}=x_{1} \ldots x_{n / 2}
$$

$\mathcal{X}_{2}=x_{n / 2+1} \ldots x_{n}$
Recursively sort \mathcal{X}_{1}, with output \mathcal{Y}_{1}
Recursively sort \mathcal{X}_{2}, with output \mathcal{Y}_{2}
Merge \mathcal{Y}_{1} and \mathcal{Y}_{2} with output \mathcal{Z}
\mathcal{Z} is the output.
The time complexity of mergesort is $\Theta(n \log n)$.

4.2 Example Computation

ATIHESVL
ATIH ESVL
AT IH ES VL
AT HI ES LV
AHIT ELSV
AEHILSTV

5 Quicksort

Pseudocode for quicksort. The input is a sequence $\mathcal{X}=x_{1} \ldots x_{n}$.
If $n \leq 1, \mathcal{X}$ is already sorted and we are done.
Else
Pick pivot $\in \mathcal{X}$.
Partition $\mathcal{X} \backslash\{$ pivot $\}$ into two sets \mathcal{X}_{1} and \mathcal{X}_{2} such that
$x \leq$ pivot for all $x \in \mathcal{X}_{1}$
$x \geq$ pivot for all $x \in \mathcal{X}_{2}$
Recursively sort \mathcal{X}_{1}, with output \mathcal{Y}_{1}
Recursively sort \mathcal{X}_{2}, with output \mathcal{Y}_{2} $\mathcal{Z}=\mathcal{Y}_{1}\{$ pivot $\} \mathcal{Y}_{2}$ (concatenation)
\mathcal{Z} is the ouput.

5.1 Problems with Quicksort

The time complexity of quicksort is $\Omega(n \log n)$, but is $O\left(n^{2}\right)$ in the worst case. In mergesort, the list is divided into two nearly equal sublists, but in quicksort, with a bad pivot, they might not be even close to equal. In the first version of quicksort that I read, the first item was chosen to be the pivot, which makes the overall running time quadratic if the list is sorted. However it is chosen, the pivot must first be swapped into the first position before partition begins. The ideal choice of the pivot is the median, but finding that median deterministically takes so much time that quicksort would no longer be "quick."

There are a number of stragies used in practice in an effort to avoid this problem. Here are some of them.

1. Pick the pivot to be the middle item in the array. This is very easy to do, and almost always leads to $O(n \log n)$ time.
2. Pick the the median of the first, last, and middle items in the array. I have not analyzed this, but in practice, it improves the performance of quicksort over just picking the middle item.
3. Pick a random item as the pivot. Of course, your code is no longer deterministic. Most computers have a built-in pseudo-random number generator. With this choice, the probability of taking quadratic time is vanishingly small, and the expected time is $\Theta(n \log n)$. Expected time can be decreased somewhat by picking the pivot to be the median of three randomly chosen items.
4. Ignore the problem: just pick the first item. According to Richard Lipton, this is almost always good in practice.

6 Polyphase Mergesort

Despite its name, polyphase mergesort is not a form of mergesort. In a sequence, we define a run to be a maximal ordered subsequence. For example, the sequence AYUGWIBCESOPNF separated into runs is AY U GW I BCDES OP N F.

The algorithm works as follows. In the first phase, deal the runs of the sequence out into two files. For example starting with ZKTUYWQFGPLARMXNJDK file 1 and file 2 would be:
f1: Z TUY Q L MX J
f2: KW FGP AR N DK
We separate those files into runs, merge the first runs of the files 1 and 2 , write into file 3 , the second runs of files 1 and 2 into file 4 , the third runs of files 1 and 2 into file 3 , and so forth:
f3: KWZ AQR DKMX
f4: FGPUY LN J
We now merge the first runs of files 3 and 4 and write into file 1 , merge the second runs of files 3 and 4 to file 2 , the third runs of files 3 and 4 into file 1 , and so forth.
f1: FGKPUWYZ DJKMX
f2: ALNQR
Continuing:
f3: AFGKLNPQRUWYZ
f4: DJKMX
Finally we have the sorted list in one file:
f1: ADFGJKKLMNPQRUWXYZ
The time complexity of polyphase mergesort is $O(n \log n)$. Each phase takes $\Theta(n)$ time, and there are $O(\log n)$ phases, since, if there are k runs at the $t^{\text {th }}$ phase, there are at most $(k+1) / 2$ runs at the $(t+1)^{\text {st }}$ phase.

7 Tree Sort

Tree sort is a fast form of insertion sort. We insert the items of \mathcal{X} one at a time into a search structure, such as a binary search tree, and then create an ordered array by traversing the search struction in alphabetic order, which is inorder for a binary search tree.

Since a binary search tree has very bad worst case performance, the time complexity of tree sort quadratic in the worst case. In order to guarantee $O(n \log n)$ time for tree sort, we must use a balanced binary search tree, or some other choice of search structure where insertion takes $O(\log n)$ time. However, according to Lipton, there is no need to worry about that in practice.

However, Lipton's observation does not always hold in practice, as I discovered in my research. See below for my solution.

8 Treap Sort

This is the same as tree sort, except that we use a treap, which is a more sophisticated kind of binary search tree. Construction of a treap requires generating random numbers, and in the worst case, treap sort takes quadratic time. However, for a large example, the probability of that is comparable to the probability of being hit by two asteroids simultaneously. In my research project, I used a treap to sort my data and the speedup with quite noticeable.

9 Heap Sort

Heap sort is a sophisticated form of selection sort, and takes $\Theta(n \log n)$ time. Although asymptotically optimal, heapsort generally takes longer than other $O(n \log n)$-time sorting algorithms.

The first phase, called heapify, is to place the items of \mathcal{X} into a maxheap. The unsophisticated version of heapify is to start with an empty heap and then insert the items one at a time. Each insertion takes $O(\log n)$ time, and so this version of heapify takes $O(n \log n)$ time. However, there is a more sophisticaed verson of heapify which takes $\Theta(n)$ time. As a consequence, the time of heapify is cut almost in half. I call this method "bottom-up bubbledown." Here is an example. As usual, we implement the heap as an almost complete binary tree stored in an array in level order. Suppose our file is THJESYIFWZGPZBRN. We simply start with an array containing those items, then execute bubbledown at each position, with decreasing indices starting from the middle. Here are the steps of heapify. (Remember, it's a maxheap.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
T	H	J	E	S	Y	I	F	W	Z	G	P	X	B	R	N	
T	H	J	E	S	Y	I	N	W	Z	G	P	X	B	R	F	bubbledown(F)
T	H	J	E	S	Y	R	N	W	Z	G	P	X	B	I	F	bubbledown(I)
T	H	J	E	S	Y	R	N	W	Z	G	P	X	B	I	F	bubbledown(Y) nothing happens
T	H	J	E	Z	Y	R	N	W	S	G	P	X	B	I	F	bubbledown(S)
T	H	J	W	Z	Y	R	N	E	S	G	P	X	B	I	F	bubbledown(E)
T	H	Y	W	Z	J	R	N	E	S	G	P	X	B	I	F	bubbledown(J)
T	H	Y	W	Z	X	R	N	E	S	G	P	J	B	I	F	bubbledown(J), cont
T	Z	Y	W	H	X	R	N	E	S	G	P	J	B	I	F	bubbledown(H)
T	Z	Y	W	S	X	R	N	E	H	G	P	J	B	I	F	bubbledown(H), cont
Z	T	Y	W	S	X	R	N	E	H	G	P	J	B	I	F	bubbledown(T)
Z	W	Y	T	S	X	R	N	E	H	G	P	J	B	I	F	bubbledown(T), cont

Heap order is achieved.
The second, and longer, phase is the selection sequence. If we used the above example, it would be too long, so I'll start with something smaller.

During the second phase, the array has two parts. The left, shrinking, part, is the maxheap, while the right, growing part (shown with bold letters) is the part already sorted. Each iteration consists of the swap of the maximum item in position 1 to the item in the last position of the heap, followed by restoration of heap order. The item that was in position 1 becomes the newest item in the sorted portion, which grows by one. The heap is decremented. Then the item in position 1, which is out of place, bubbles down until heap order is restored.

After n iterations, the heap is empty and the sorted portion is the entire array.

1	2	3	4	5	6	7	8	9	
H	U	B	J	E	R	P	W	Q	
H	U	B	W	E	R	P	J	Q	bubbledown(J)
H	U	R	W	E	B	P	J	Q	bubbledown(B)
H	W	R	U	E	B	P	J	Q	bubbledown(U)
W	H	R	U	E	B	P	J	Q	bubbledown(H)
W	U	R	H	E	B	P	J	Q	bubbledown(H), cont
W	U	R	Q	E	B	P	J	H	bubbledown(H), cont
W	U	R	Q	E	B	P	J	H	bubbledown(H) heap order
H	U	R	Q	E	B	P	J	W	swap W and H
U	H	R	Q	E	B	P	J	W	bubbledown(H)
U	Q	R	H	E	B	P	J	W	bubbledown(H), cont
U	Q	R	J	E	B	P	H	W	bubbledown(H), cont
H	Q	R	J	E	B	P	U	W	swap U and H
R	Q	H	J	E	B	P	U	W	bubbledown(H)
H	Q	P	J	E	B	R	U	W	swap R and H
Q	H	P	J	E	B	R	U	W	bubbledown(H)
Q	J	P	H	E	B	R	U	W	bubbledown(H), cont
B	J	P	H	E	Q	R	U	W	swap Q and B
P	J	B	H	E	Q	R	U	W	bubbledown(B)
E	J	B	H	P	Q	R	U	W	swap P and E
J	E	B	H	P	Q	R	U	W	bubbledown E
J	H	B	E	P	Q	R	U	W	bubbledown E, cont
E	H	B	J	P	Q	R	U	W	swap E and J
H	E	B	J	P	Q	R	U	W	bubbledown(E)
B	E	H	J	P	Q	R	U	W	swap H and B
E	B	H	J	P	Q	R	U	W	bubbledown(B)
B	E	H	J	P	Q	R	U	W	swap E and B
B	E	H	J	P	Q	R	U	W	sorted

[^0]: ${ }^{1}$ That means, the worst case sequence of length n. For example, bubblesort is very fast in some cases, such as if the sequence is already sorted, but is much slower in many other cases. The worst case time is defined to be the maximum time, taken over all n ! permutations of the input.

