
University of Nevada, Las Vegas Computer Science 477/677 Fall 2022

Assignment 1: Answers

1. True or False

(a) F n2 = Θ(n3).

(b) T log n2 = Θ(log n3).

(c) F log2 n = Θ(log3 n).

(d) F n1.0001 = O(100 log100 n)

2. This problem is based on problem 0.3(c) on page 9 of the textbook. I have rewritten the problem, and

the answer differs from the answer to the problem in the textbook.

The Fibonacci numbers F1, F2, . . . are defined by the rules

F1 = 1

F2 = 1

Fn = Fn−2 + Fn−1 for n ≥ 3

(a) Compute Fn for n = 3, 4, 5, 6, 7, 8.

(b) Find a constant C such that Fn = Θ(Cn)?

Solution: Assume that Fn = Cn. This is false, but it’s close enough. Then

Cn = Cn−2 + Cn−1

Divide by Cn−2 :

C2 = C + 1

C2 − C − 1 = 0

By the quadratic formula:

C =
1±

√
5

2
Since C must be positive:

C =
1 +

√
5

2
≈ 1.6180339



3. The following code fragment takes Θ(n2) time to execute. (We assume that n is given.)

for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++)

Here is a pseudocode version. It is humanly readable, but not in any particular programming language.

Read n

initialize count

increment count

i = 0

while i < n

increment i

increment count

j = 0

while j < n

increment j

increment count

Print count

(a) Write this program in C++.

int n;

int main()

{

int kounter = 0;

cout << "Enter a value of n: ";

cin >> n;

cout << " n = " << n << endl;

kounter++;

int i = 0;

while(i < n)

{

i++;

kounter++;

int j = 0;

while(j < n)

{

j++;

kounter++;

}

}

cout << "counter = " << kounter << endl;

return 1;

}

2



(b) Run this program, entering various values of n, such as 1, 4, 10, 30, 100.

Enter a value of n: 1 n = 1 counter = 3

Enter a value of n: 4 n = 4 counter = 21

Enter a value of n: 10 n = 10 counter = 111

Enter a value of n: 30 n = 30 counter = 931

Enter a value of n: 100 n = 100 counter = 10101

(c) Looking at the output, is it clear to you that the time complexity of the program is Θ(n2)?

Programming tip: never use an English word as an identifier in a program. Use a misspelled word, or

a foreign word, instead. Why?

4. For each of these fragments:

Expand the fragment to a C++ program with a counter.

Run the code for n = 1, 10, 100, 1000, 1000000.

For each, compute the final value of the counter for each n. Show the results in a table. (You do not

have to turn in your code.)

Guess the asymptotic time complexity, which will be Θ(1), Θ(log n), Θ(n), Θ(n log n), Θ(
√
n), or Θ(n2).

1 10 100 1000 1000000 complexity

(a) 1 4 7 10 20 Θ(log n)

(b) 1 3 24 2984 2999973 Θ(n)

(c) 2 4 11 33 1001 Θ(
√
n)

(d) 1 35 673 9977 19951425 Θ(n log n)

(a) for(int i = n; i > 0; i=i/2)

i = i/2;

(b) for(int i = 1; i < n; i++)

for(int j = n; j > i; j=j/2);

(c) for(int i = 0; i*i < n; i++)

(d) for(int i = 1; i < n; i++)

for(int j = i; j > 0; j=j/2);

3



5. The recursive algorithm implemented below as the C++ function mystery computes a well-known alge-

braic operation. What is that operation?

1 float squre(float x)

2 {

3 return x*x;

4 }

5

6 float mystery(float x, int k)

7 {

8 if (k == 0) return 1.0;

9 else if(x == 0.0) return 0.0;

10 else if (k < 0) return 1/mystery(x,-k);

11 else if (k%2) return x*mystery(x,k-1);

12 else return mystery(squre(x),k/2);

13 }

It returns xk.

It is clear that squre(x) returns x2.

The code fails if x = 0 and k ≤ 0, because division by zero is impossible and because 00 is undefined. So

we can only prove correctness if x 6= 0 or k > 0.

Proof of Correctness: By induction on the depth of the recursion.

If k = 0, then the execution at line 8 returns 1, the correct value. If x = 0, then the execution at line 9

return 0, the correct value. Recursion will occur if the first line executed in 10, 11, or 12. If k < 0, then

xk =
1

x−k
, and the correct value is returned at line 10. Suppose that k > 0 and x 6= 0. If k is even, the

line 12 is executed. Since xk = (x2)
k

2 , the correct value will be returned. If k is odd, then k − 1 is even.

Line 11 returns x ∗ (xk−1) = xk, which is correct.

4


