1. True or False
 (a) $F \ n^2 = \Theta(n^3)$.
 (b) $T \ \log n^2 = \Theta(\log n^3)$.
 (c) $F \ \log^2 n = \Theta(\log^3 n)$.
 (d) $F \ n^{1.0001} = O(100 \log^{100} n)$

2. This problem is based on problem 0.3(c) on page 9 of the textbook. I have rewritten the problem, and the answer differs from the answer to the problem in the textbook.

The Fibonacci numbers F_1, F_2, \ldots are defined by the rules
$F_1 = 1$
$F_2 = 1$
$F_n = F_{n-2} + F_{n-1}$ for $n \geq 3$

(a) Compute F_n for $n = 3, 4, 5, 6, 7, 8$.
(b) Find a constant C such that $F_n = \Theta(C^n)$?

Solution: Assume that $F_n = C^n$. This is false, but it’s close enough. Then

$$C^n = C^{n-2} + C^{n-1}$$

Divide by C^{n-2}:

$$C^2 = C + 1$$
$$C^2 - C - 1 = 0$$

By the quadratic formula:

$$C = \frac{1 \pm \sqrt{5}}{2}$$

Since C must be positive:

$$C = \frac{1 + \sqrt{5}}{2} \approx 1.6180339$$
3. The following code fragment takes $\Theta(n^2)$ time to execute. (We assume that n is given.)

```c
for(int i = 0; i < n; i++)
    for(int j = 0; j < n; j++)
```

Here is a pseudocode version. It is humanly readable, but not in any particular programming language.

Read n

initialize count

increment count

$i = 0$

while $i < n$

 increment i

 increment count

$j = 0$

while $j < n$

 increment j

 increment count

Print count

(a) Write this program in C++.

```c
int n;
int main()
{
    int kounter = 0;
    cout << "Enter a value of n: ";
    cin >> n;
    cout << " n = " << n << endl;
    kounter++;
    int i = 0;
    while(i < n)
    {
        i++;
        kounter++;
        int j = 0;
        while(j < n)
        {
            j++;
            kounter++;
        }
    }
    cout << "counter = " << kounter << endl;
    return 1;
}
```
(b) Run this program, entering various values of n, such as 1, 4, 10, 30, 100.

Enter a value of n: 1 n = 1 counter = 3
Enter a value of n: 4 n = 4 counter = 21
Enter a value of n: 10 n = 10 counter = 111
Enter a value of n: 30 n = 30 counter = 931
Enter a value of n: 100 n = 100 counter = 10101

(c) Looking at the output, is it clear to you that the time complexity of the program is \(\Theta(n^2) \)?

Programming tip: never use an English word as an identifier in a program. Use a misspelled word, or a foreign word, instead. Why?

4. For each of these fragments:

 Expand the fragment to a C++ program with a counter.

 Run the code for \(n = 1, 10, 100, 1000, 1000000 \).

 For each, compute the final value of the counter for each \(n \). Show the results in a table. (You do not have to turn in your code.)

 Guess the asymptotic time complexity, which will be \(\Theta(1) \), \(\Theta(\log n) \), \(\Theta(n) \), \(\Theta(n \log n) \), \(\Theta(\sqrt{n}) \), or \(\Theta(n^2) \).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>1000000</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td>3</td>
<td>24</td>
<td>2984</td>
<td>299973</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>33</td>
<td>1001</td>
<td>(\Theta(\sqrt{n}))</td>
</tr>
<tr>
<td>(d)</td>
<td>1</td>
<td>35</td>
<td>673</td>
<td>9977</td>
<td>19951425</td>
<td>(\Theta(n \log n))</td>
</tr>
</tbody>
</table>

(a) for(int i = n; i > 0; i/=2)
 i = i/2;

(b) for(int i = 1; i < n; i++)
 for(int j = n; j > i; j/=2);

(c) for(int i = 0; i*i < n; i++)

(d) for(int i = 1; i < n; i++)
 for(int j = i; j > 0; j/=2);
5. The recursive algorithm implemented below as the C++ function `mystery` computes a well-known algebraic operation. What is that operation?

```cpp
1 float square(float x)
2 {
3     return x*x;
4 }
5
6 float mystery(float x, int k)
7 {
8     if (k == 0) return 1.0;
9     else if(x == 0.0) return 0.0;
10    else if (k < 0) return 1/mystery(x,-k);
11    else if (k%2) return x*mystery(x,k-1);
12    else return mystery(square(x),k/2);
13 }
```

It returns x^k.

It is clear that `square(x)` returns x^2.

The code fails if $x = 0$ and $k \leq 0$, because division by zero is impossible and because 0^0 is undefined. So we can only prove correctness if $x \neq 0$ or $k > 0$.

Proof of Correctness: By induction on the depth of the recursion.

If $k = 0$, then the execution at line 8 returns 1, the correct value. If $x = 0$, then the execution at line 9 return 0, the correct value. Recursion will occur if the first line executed in 10, 11, or 12. If $k < 0$, then $x^k = \frac{1}{x^{-k}}$, and the correct value is returned at line 10. Suppose that $k > 0$ and $x \neq 0$. If k is even, the line 12 is executed. Since $x^k = (x^2)^{k/2}$, the correct value will be returned. If k is odd, then $k-1$ is even. Line 11 returns $x \cdot (x^{k-1}) = x^k$, which is correct.