
Corrected November 8, 2021

The A∗ Algorithm

We walk through an example computation of the A∗ algorithm for solving the single pair minpath problem on

a weighted directed graph. The pair is (S, T ). Arc weights are shown as black numerals, we write w(x, y) for

the weight of the arc from x to y.

A D

B

F

K
C

G
T

P
S

5

3

4

14

9

6

7

8

35

10

9
8

24

15

9

15

13

0
17

22

18
2034

25

28

31

34

3236

5

6
6

E
H

RM

N

The heuristic h(x) for each vertex x is indicated by a red numeral.

0

S A D

B

F

K
C

G
T

P

25

5

3

4

14

9

6

7

35

10

9
8

24

15

9

15

13

0
17

22

18
2034

25

28

31

34

3236

5

6
6

8
E

H

RM

N

(a)

Just as for Dijkstra’s algorithm, we maintain three sets of vertices: fully processed, indicated by a blue back-

ground, partially processed, indicated by a green background, and unprocessed, indicated by no background.

The partially processed vertices are held in an updatable minqueue.

For each fully or partially processed vertex x, we let f(x) be the length of the shortest path so far found,

indicated by a blue numeral.

We let g(x) = f(x) + g(x), indicated by a green numeral.

Initially, there are no fully processed vertices, and only the source vertex S is partially processed.

1



5

27

0
S D

B

F

K
C

G
T

P
A

5

3

95

10

9
8

15

9

13

0

18
20

2834

5

39

14

6

2225
15

17
7

3

8

2

3132
4

36

34

25
4

6
6

8
E

H

RM

N

(b)

At each step, if g(x) is the minimum value over all partially processed vertices, x becomes fully processed, and

all its unprocessed out-neighbors become partially processed. During this step, S becomes fully processed,

and A and H become partially processed.

5

27

11
28

9

29

0

S A D

B

F

K
C

G
T

P

3

95

10

9
8

24

15

9

13

0

18
34

28

31

34

3236

25

5
8

39

14
25

15

7

3

17

21

5

36

20

6
6

422

6
8

E
H

RM

N

(c)

At this step, A becomes fully processed, while B, D, and E become partially processed. Backpointers are

indicated as red arrows.

5

27

28
17

30

11

9

29

0

S D

B

F

K
C

G
T

P
A

3

95

10

9
8

24

15

9

0

18
34

28

31

34

3236

25

5
8

39

42225
15

7

3

5

20

13

6

6

17

14

6

8
E

H

RM

N

(d)

E becomes fully processed, while F becomes partially processed.

2



5

27

28

17

30

9

29
19

34

12

0

S D

B

F

K
C

G
T

P
A

3

95

10

9
8

24

15

0

18
34

28

31

34

3236

25

5
8

39

14
2225

15

7

3

17

5

13 9

6

6

4

6

11

20

30

8
E

H

RM

N

(e)

B becomes fully processed, while C becomes partially processed.

17

27

5

11 28

30
17

23 32

12

9

32

0

S A D

B

F

K
C

G
T

P

95

10

9
8

24

15

0

34

28

31

34

3236

25

5
8

39

14
2225

3

176

5

20

6
6

15

97

3
4

18

13

29 30

8
E

H

RM

N

(f)

C becomes fully processed. D acquires a new, smaller value of f , and its backpointer changes to C.

17
5

27

11

28
30

9

29

12

30

32 23

32

32

0

S A D

B

F

K
C

G
T

P

95

10

9
8

24

15

0

18
34

28

31

34

3236

25

5
8

39

4
14

2225

7

3

176

5

20

13

6
6

9

3

15

3217

17

8
E

H

RM

N

(g)

D and G become fully processed, while T becomes partially processed.

3



5

27

11
28

30

9

12

32

30

23
32

0

S A D

B

F

K
C

G
T

P

95

10

9
8

24

15

0

34

28

31

34

3236

25

5
8

39

4
14

2225
15

7

3

176

5

20

13

6
6

9

17

17

3

32
32

18

8
E

H

RM

N

(h)

It seems unnecessary, but the algorithm only stops when T becomes fully processed. Although not in this

example, it is possible that T would acquire a new backpointer after being partially processed for the first

time.

Errors fixed. If you detect another error, please send me email as soon as possible.

4


