The Complex Number System

In \mathbb{R} , the real number system, a negative number has no square root. We can fill in that gap by inventing a new number system \mathbb{C} , the complex numbers, also called the Gaussian numbers. (After Karl Friedrich Gauss.) In \mathbb{C} , every number except zero has two square roots, three cube roots, four 4th roots, *etc.*.

A complex number is represented in two standard ways: Cartesian or Polar. If z is a complex number, we can write $z = a + b\mathbf{i}$, where a = Re(z), the *real part* of z, and b = Im(z), the *imaginary part* of z. Note that the imaginary part of a complex number is a real number.

Arithmetic with Complex Numbers

All the arithmetic operations on complex numbers expressed in $a + b\mathbf{i}$ (Cartesion) form are computed using high school algebra, plus just one additional rule: $\mathbf{i}^2 = -1$.

Let $z = a + b \mathbf{i}$ and $w = c + d \mathbf{i}$, where a, b, c, d are real numbers.

- 1. Addition: z + w = (a + c) + (b + d)**i**.
- 2. Subtraction: z w = (a c) + (b d)**i**.
- 3. Multiplication: z * w, or simply zw, is $(ab bd) + (ad + bc)\mathbf{i}$.
- 4. Conjugate: $\overline{z} = a b \mathbf{i}$.
- 5. Modulus: $|z| = \sqrt{a^2 + b^2}$, also called the *absolute value* of z. Note that $z\overline{z} = |z|^2$.

6. Division:
$$z/w = \frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{(a+b\mathbf{i})(c-d\mathbf{i})}{(c+d\mathbf{i})(c-d\mathbf{i})} = \frac{(ac+bd) + (-ad+bc)\mathbf{i}}{c^2 + d^2}$$

7. Square Root: $\sqrt{z} = \pm \begin{cases} \sqrt{\frac{\sqrt{a^2 + b^2} + a}{2}} + \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}}\mathbf{i} \text{ if } b > 0 \\ \sqrt{\frac{\sqrt{a^2 + b^2} + a}{2}} - \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}}\mathbf{i} \text{ if } b < 0 \end{cases}$

Note that the square root sign, $\sqrt{}$ indicates the positive square root of a positive real number.

Cube roots of $a + b\mathbf{i}$ do not have a convenient representation.

Arithmetic with Complex Numbers in Polar Form

Let $z = \rho (\cos \theta + \mathbf{i} \sin \theta)$ and $w = \varsigma (\cos \phi + \mathbf{i} \sin \phi)$

- 1. Addition and Subtraction do not have convenient polar representations.
- 2. Argument: $\arg z = \theta$. But we can also say $\arg z = \theta + 2k\pi$ for any integer k. Arguments are angles, measured in either degrees or radians. 360 degrees equals 2π radians, since the circumference of a circle is 2π times the radius.
- 3. Conjugate: $\overline{z} = \rho(\cos(-\theta) + \mathbf{i}\sin(-\theta))$. That is, $\arg \overline{z} = -\arg z$.
- 4. Modulus: $|z| = \varrho$.
- 5. Multiplication: Take the sum of the arguments and the product of the moduli. $zw = \rho \varsigma(\cos(\theta + \phi) + \mathbf{i} \varsigma \sin(\theta + \phi)).$
- 6. Division: Take the difference of the arguments and the quotient of the moduli. $z/w = \frac{\varrho}{\varsigma} (\cos(\theta - \phi) + \mathbf{i}\sin(\theta - \phi))$
- 7. Square Root: Take half the argument and the square root of the modulus. $\sqrt{z} = \pm (\sqrt{\varrho} (\cos \frac{\theta}{2} + \mathbf{i} \sin \frac{\theta}{2})$
- 8. Cube Root: Take a third of the argument and the cube root of the modulus. But there are three cube roots:

$$\sqrt[3]{z} = \begin{cases} (\sqrt[3]{\varrho}(\cos\frac{\theta}{3} + \mathbf{i}\sin\frac{\theta}{3}) \\ (\sqrt[3]{\varrho}(\cos\frac{\theta+2\pi}{3} + \mathbf{i}\sin\frac{\theta+2\pi}{3}) \\ (\sqrt[3]{\varrho}(\cos\frac{\theta+4\pi}{3} + \mathbf{i}\sin\frac{\theta+4\pi}{3}) \end{cases} \end{cases}$$

Conversion to Polar Representation

If $z = a + b\mathbf{i}$, we would like to find ρ and θ such that $z = \rho(\cos \theta + \mathbf{i} \sin \theta)$. $\rho = |z| = \sqrt{a^2 + b^2}$. If $a \ge 0$, we can choose $\theta = \arctan \frac{b}{a}$. How would you find θ if $a \le 0$?

The Exponential Function on \mathbb{C}

Recall $e \approx 2.71828...$, the base of the natural logarithm. e^z is defined for any complex number z. If z = a + bi, the modulus of e^z is e^a , while the argument of e^z is b. That is: $e^z = e^a(\cos b + \mathbf{i} \sin b)$.

Roots of Unity

The word "unity" means the complex number $1+0\mathbf{i}$, or simply 1. For any n, the n^{th} roots of unity are the n solutions to the equation $z^n = 1$, which are written either as $e^{\frac{2k\pi \mathbf{i}}{n}}$, or $\cos\frac{2k\pi}{n} + \mathbf{i}\sin\frac{2k\pi}{n}$ for $k = 0, 1, \ldots n - 1$. For example, the 4 4th roots of unity are 1, $\mathbf{i}, -1, -\mathbf{i}$. The 3 cube roots of unity are 1, $\frac{-1+\sqrt{3}\mathbf{i}}{2}$. Roots of unity always lie on the unit circle centered at zero.

What is the modulus of $-1 - \mathbf{i}$? Ans: $\sqrt{2}$. What is the argument of $-1 - \mathbf{i}$? Ans: 225 degrees, or $\frac{5\pi}{4}$ radians. Radian measure is the default, so we can simply say the argument is $\frac{5\pi}{4}$. It would also be correct to say the argument is -135 degrees or $-\frac{3\pi}{2}$.